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Baidashnikov, O. —Species distribution models (SDMs) are generally thought to be good indicators of 
habitat suitability, and thus of species’ performance. Consequently SDMs can be validated by checking 
whether the areas projected to have the greatest habitat quality are occupied by individuals or populations 
with higher than average fi tness. We hypothesized a positive and statistically signifi cant relationship 
between observed in the fi eld body size of the snail V. turgida (Rossmässler, 1836) and modelled habitat 
suitability, tested this relationship with linear mixed models, and found that indeed, larger individuals 
tend to occupy high-quality areas, as predicted by the SDMs. However, by testing several SDM algorithms, 
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Introduction

Information on where species occur underlies nearly every aspect of managing biodiversity (Franklin, 
2010), but knowledge of distributions is oft en coarse or incomplete. Species distribution models, SDMs (closely 
related to ecological niche models, ENMs, bioclimate-envelope modelling etc.) provide a tool used to derive 
spatially explicit predictions of environmental suitability for species (Guisan et al., 2017) by employing suitability 
indices. Suitability indices describe the relationship between habitat suitability score and a given environmental 
variable of a target species. Habitat suitability is a way to predict the suitability of habitat at a certain location 
for a given species or group of species based on their observed affi  nity for particular environmental conditions 
(Yi et al., 2016; Ma, Sun, 2018). SDMs therefore have been widely used for predicting  distributions of species in 
terrestrial, freshwater and marine environments, and across taxa from many biological groups (Elith, Leathwick, 
2009), with increasing numbers of publications each year (Robinson et al., 2011; Brotons, 2014). SDMs have 
shown to be effi  cient in biodiversity research considering climate changes (Barbet-Massin et al., 2011; Visconti 
et al., 2016), conservation planning (Kremen et al., 2008), invasive species and pest risk assessments (Gallien et 
al., 2012; Jeger et al., 2018), pathogen spread (Schatz et al., 2017), rewilding projects (Jarvie, Svenning, 2018), 
and a huge number of  other issues ranging from mapping snake bite risk (Yañez-Arenas et al., 2016) to Pygmy 
presence in Central Africa (Olivero et al., 2016). 

SDM tools generally correlate species’ occurrence patterns with environmental variables, which are 
frequently selected from an array of ‘bioclimatic’ indices (Hijmans et al., 2005; Kriticos et al., 2012; etc.) and 
thus focus on the abiotic conditions aff ecting species distributions (Busby, 1991). Recently, more studies include 
biotic covariates (Wisz et al., 2013; Si-Moussi et al., 2019), motivated by the need to account for more directly 
explanatory variables and resources, although dependencies between species (for instance, competition) may 
be correlated indirectly through latent abiotic variables. So in general, keeping in mind the geographic scale, 
adaptation to abiotic factors allows assuming adaptation to biotic interactions too. For example, temperature 
comprises a large set of ecophysiologically relevant variables (Dahl, 1998), but even simple temperature 
variables, like annual mean temperature, covary spatially with many broad-scale biotic patterns at regional and 
global scales (Leith, Whittaker, 1975). Apparently the success of bioclimate-envelope modelling comes from 
this strong spatial covariance between easily measured abiotic variables and the poorly understood and largely 
unknown ecologically critical biotic variables (Jackson et al., 2009).

Traditionally, determining environmental and climatic features that characterize the species’ niche and 
are responsible for shaping their distribution would require laborious fi eld measurements of key environmental 
variables in natural populations (Nakazato et al., 2010; Warren et al., 2020). Importantly, the use of SDMs has 
allowed to identify such driving factors, but SDM construction involves many decisions which may adversely 
aff ect model predictions, including the choice of modelling algorithms (Warren et al., 2020). Choices regarding 
optimal models and methods are typically made based on discrimination accuracy, which only measures 
whether a model assigns higher suitability values to presence points than it does to background or absence 
points (Gurgel-Gonçalves et al., 2012), and conclusions have been made of the inability of current evaluation 
metrics to assess the biological signifi cance of distribution models (Fourcade et al., 2018).

Predictions from SDMs are generally thought to be good indicators of habitat suitability, and thus of 
species’ performance. An implicit assumption of the SDMs is that the predicted ecological niche of a species 
actually refl ects the adaptive landscape of the species, so in sites predicted to be highly suitable, species would 
have maximum fi tness compared to in sites predicted to be poorly suitable (Zizhen, Hong, 1997; Nagaraju et al., 
2013). Th erefore these models potentially can be validated by checking whether the areas projected to have the 
greatest habitat quality are occupied by individuals or populations with higher than average fi tness (Mammola 
et al., 2019), in other words check the SDMs functional accuracy. For instance, a positive correlation (r = 0.5) 
was found between the growth rate of a wild grass carp, Ctenopharyngodon idella (Valenciennes, 1844), and 
habitat quality for the species as projected by a maximum entropy model (Wittmann et al., 2016). In another 
case modelled habitat quality was positively associated with maximum body and egg case size in a spider species, 
Vesubia jugorum (Simon, 1881) (Mammola et al., 2019). Yet, in the few studies that have explicitly tested the 
relationship between habitat quality and species traits, not always such relationship was found (Mammola et 
al., 2019). Th e problem could be that it is oft en not clear which measurable biological phenomena should be 
correlated with suitability estimates from SDMs, moreover when many of the measurable phenomena that are 
potentially related to suitability have not been quantifi ed in detail and as such are merely unavailable for model 
validation (Warren et al., 2020).

In this study we attempted to highlight important variables shaping the current niche of a terrestrial 
gastropod, Vestia turgida (Rossmassler, 1836), found primarily in the Carpathian Mountains, with a focus on 
the relationships between habitat quality and species traits, consequences these may have in terms of model 
selection and performance. We argue that the habitat suitability of a species as predicted by the ecological niche 
model may also refl ect the adaptive landscape of the species. Indeed, species should have a higher performance 
in the core of their niche (i. e. where conditions are more suitable) than at their edges (Pulliam, 2000).
•  First, using the existing natural distribution data of the species and a variety of environmental variables, we 

generate ecological niche model predictions on the habitat suitability of V. turgida in the Ukrainian Carpathians 
by employing a number of algorithms commonly used or recently developed for constructing SDMs. 
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•  Second, we evaluate the model predictions both in terms of discrimination accuracy, using conventional 
criteria, and functional accuracy by using body size as a measure of fi tness and testing whether the degree 
of predicted habitat suitability correlates positively with observations of body size. Th e null hypothesis 
was that no correlation exists between observed body size and modelled habitat suitability, r = 0. We 
hypothesized a positive, signifi cant relationship.

•  Finally we rank the SDM outputs and select the ‘best’ modelling approach to analyze the environmental 
niche of the species to see which of the employed sets of environmental variables promote better 
performance of the SDMs in terms of functional accuracy. 

Species  and study area
V. turgida is a species of air-breathing land snail, a terrestrial pulmonate gastropod mollusk in the family 

Clausiliidae, the door snails, all of which have a clausilium, a roughly spoon-shaped “door”, which can slide 
down to close the aperture of the shell (Likharev, 1962). Th e species is considered an endemic Carpathian snail, 
though sporadically met in the Dniester Basin of Podolia in Ukraine. It is widely distributed in the Carpathian 
Region with numerous localities especially in Slovakia, Poland and Ukraine. Several isolated populations are 
threatened, especially due to changes in forest management and water drainage. However, the whole species is 
considered of Least Concern (LC) (Walther, 2017). Nevertheless, isolated relict subpopulations far off  the main 
range as well as marginal populations could be endangered by human encroachment and climate change.

According to Kerney et al. (1983), V. turgida occurs in very moist woodland, under logs and ground 
litter. It is supposed that the litter and bacteria decomposing dead wood are the main components of the diet 
of clausiliids (Fog, 1979). Th e species ascends to 2100 m in the Carpathians (the Tatra Mountains) (Dyduch-
Falniowska, 1991), whereas in the Podolia snails are found at a much lower height (down to 200 m of even less). 

Th e study area largely encompasses the range of the Ukrainian Carpathians (48°32 N, 23°38 E), which 
extends over an area of about 24 000 sq. km. Th e study area lies at an altitude of 95–2030 m, although 94 % of the 
mountains are < 1200 m. Th e highest elevations are located in the southern parts of the Ukrainian Carpathians, 
while the south-west (bordering Romania), west (bordering the Transcarpathian Lowland of Ukraine) and 
north-west (bordering Poland) Carpathians are characterized by extensive valley systems and relatively gentle 
slopes. Precipitation of 500–1400 mm/year feeds a dense network of rivers (Holubets, 1988). Th e July (warmest 
month) temperature varies from 20 °C at the southern edge of the Carpathians and 18 °C in the north to 6 °C 
on the highest peaks (Herenchuk, 1968; Kuemmerle et al., 2009). Winter temperatures range from –3 °C to 
–10 °C. The mountains are dominated by Fagus sylvatica, Picea abies, Abies alba forests, replaced by Pinus mugo 
and Juniperus communis in the subalpine and grasslands in the alpine belts (Herenchuk, 1968; Kuemmerle et 
al., 2009). 

Next to this area, were the species is more or less sporadically found, is the Dniester basin of Podolia, 
covering around 24 500 sq. km, with an average altitude of 320–350 m. Th e climate is temperate-subcontinental 
with a mean annual temperature of about 7–9 °C and 600–650 mm annual precipitation (Climate of Ukraine, 
2003). Th e relief of the area is dissected by numerous river valleys into distinct ridges. About 10–15 % of the area 
is occupied by the forest vegetation comprised of oak-hornbeam-beech stands. 

Species  dis tr ibut ion model l ing

Col lect ion data
In 1985–1986, 1989–1992 and 2004 snails were collected by hand at 94 georeferenced sites at elevations 

up to 1527 m a. s. l. (fi g. 1). Sampling intensity varied over geography, therefore to minimize spatial sampling 
heterogeneity, we aggregated data at the resolution of the environmental predictors to avoid infl ation of the 
number of presences. 

With a LOMO Binocular Stereo Microscope MBS-1, we measured in 1 016 specimens of V. turgida three 
morphological traits related to body size: shell height (H), shell diameter (D) and number of whorls (Wh) using 
a conventional standard (Likharev, Rammelmeyer, 1952). 

Environmental  predictors
In most cases environmental predictors are selected based on the availability and experience that the 

variables show correlation with the species distribution (Guisan, Zimmerman, 2000). Because of the habitat 
complexity it is diffi  cult to single out which factors play a crucial role in controlling mollusks distribution 
(Sulikowska-Drozd, 2005), but for the majority of terrestrial gastropods their occurrences are considered to 
be determined by several factors, such as pH and calcium content (Nekola, Smith, 1999; Martin, Sommer, 
2004), drainage (Paul, 1978), altitude (Cowie et al., 1995), shelter possibilities (South, 1965), humidity (Martin, 
Sommer, 2004), plant composition, and plant diversity (Barker, Mayhill, 1999). Important environmental 
factors emerging from these studies are moisture conditions, vegetation structure and soil pH, which is related 
to soil calcium content (Astor, 2014). 
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Under these circumstances we might expect temperature and precipitation variables, together with their 
various combinations, to be important (Hof, 2011). Climate variables used in SDMs are assumed to refl ect 
the physiological constraints on the study species that aff ect where they can survive in the wild (Kearney, 
Porter, 2009), although many commonly used SDM variables have been shown to oft en neglect important 
physiological factors (Gardner et al., 2019). Nevertheless, we employ climate variables anticipating their wider 
impacts, by being closely linked to the energy available in the ecosystem or the length of the growing seasons, 
plant growth, species’ spatial variation patterns owing to moisture availability, operating through variations in 
plant productivity, impact on soil properties, etc. 

We used the widely accepted bioclimatic potential predictor variables for species distribution and 
suitability analysis (Hijmans et al., 2005). Th ese bioclimatic predictors are ecologically more sensitive to 
diff erentiate the physio-ecological tolerances of a habitat (Th ompson et al., 2009) than simple temperature and 
precipitation predictors (Graham, Hijmans, 2006; Kumar, Stohlgren., 2009). Information on the bioclimatic 
parameters was collected as raster layers from the WorldClim website (http://www.worldclim.org/current) with 
a spatial resolution of 30 arc seconds. Th ese variables indicate a general trend of precipitation and temperature, 
extremity and seasonality of temperature. Incidentally, SDMs based namely on bioclimatic variables were 
recently generated for another terrestrial snail, Faustina faustina, found mostly in the Carpathians, aiming to 
identify regions of climate suitability for the species (Zając et al., 2020).

Former studies have shown a strong infl uence of topography on both biotic and abiotic factors in study 
areas (Homeier et al., 2010; Werner et al., 2012; Svenning et al. 2009) and topography variables are observed 
to make an extremely high (up to 90 %) contribution to species distribution models (Dudov, 2017). In this 
study, topographic variables (e. g. elevation, slope, aspect etc.) are used as proxies for environmental factors 
such as insolation, wind exposure, hydrological processes etc., aff ecting the quality of the species’ habitat. 
Topographical variables were based on the SRTM data set that is available at http://srtm.csi.cgiar.org. Derived 
topographic variables were calculated using the open source soft ware SAGA GIS (Conrad et al., 2015).

Valuable remotely sensed predictors for site quality and forest species communities also include vegetation 
indices such as the normalized diff erence vegetation index (NDVI), which has been widely used as surrogate 
of primary productivity and vegetation density (Pettorelli et al., 2005). Vegetation data include maps NDVI 
obtained from satellite images by NASA and processed at Clark Lab (www.clarklabs.org). Means and deviations 
were computed over an 18-year period (from 1982 to 2000) and original NDVI real values (from –1 to +1) were 
rescaled to a range from 1 to 255 (byte format).

Considering that vegetation is highly infl uenced by edaphic variables, we also examined soil properties. 
In many studies on land snails, particular attention was paid to soil chemical parameters, as snails have a 

Fig.1. Sampling sites for Vestia turgida in Ukraine (photo by O. Baidashnikov).
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high demand of calcium for shell formation (Martin, Sommer, 2004). However, several studies confi rm the 
importance of a range of soil characteristics as determinants of gastropod distribution (Ondina et al., 2004). Soil 
properties, including physical and chemical features, were downloaded from SoilGrids (www.soilgrids.org), a 
system for global digital soil mapping (Hengl et al., 2014).

In this study we used for modelling purposes a recently reconsidered in terms of biological signifi cance set 
of 16 climatic and two topographic variables (the ENVIREM dataset, downloaded from http://envirem.github.
io), many of which are likely to have direct relevance to ecological or physiological processes determining 
species distributions (Title, Bemmels, 2018). Th ese variables are worth consideration in species distribution 
modeling applications, especially as many of the variables (in particular, potential evapotranspiration) have 
direct links to processes important for species ecology. 

Cal ibrat ion area
We calibrated and projected SDMs within the spatial extent of the Ukrainian Carpathians. Because true 

absence data is not available, pseudo-absence data was generated in locations with contrasting environmental 
conditions (Barbet-Massin et al., 2012), using the  BCCVL application (Hallgren et al., 2016).

Model l ing methods
There exists a large suite of algorithms for modelling the distribution of species, but because 

there is no single ‘best’ algorithm some authors have reasonably concluded that niche or distribution 
modelling studies should begin by testing a suite of algorithms for predictive ability under the particular 
circumstances of the study and choose an algorithm for a particular challenge based on the results of 
those tests (Qiao et al., 2015).

Accordingly, we assessed the relative performance of various categories of SDM algorithms: BIOCLIM 
(Busby, 1991; Booth et al., 2014), Generalized Linear Models (GLMs, Guisan et al., 2002), MaxLike (Royle, et al., 
2012), Random forests (Breiman, 2001), Boosted Regression Trees (Elith et al., 2008), Support Vector Machines 
(SVMs; Vapnik, 1998), and Bayesian additive regression trees (BART, Carlson, 2020).

SDM methods, excluding BART, were employed using the “sdm” package within the statistical soft ware R 
(Naimi, Araújo, 2016), following the recommended by the authors default settings. Models were evaluated by 
10-fold cross-validation using 30 % of the occurrence dataset, and incorporating the aforementioned pseudo-
absence data.

Initially we fi tted models that included a selection of non-collinear environmental variables from the 
entire set based on the variance infl ation factor (VIF, Marquardt, 1970): strongly collinear variables (VIF > 10) 
were discarded. Subsequently automated variable set reduction was employed.

In terms of discrimination accuracy model performance was evaluated using two commonly used 
validation indices: the area under a receiver operating characteristic (ROC) curve, abbreviated as AUC, and 
the True Skill Statistic (TSS). Th e AUC validation statistic is a commonly used threshold independent accuracy 
index that ranges from 0.5 (not diff erent from a randomly selected predictive distribution) to 1 (with perfect 
predictive ability). Models having AUC values > 0.9 are considered to have very well, > 0.8 good and > 0.7 useful 
discrimination abilities (Metz, 1978). Th e TSS statistic ranges from −1 to +1 and tests the agreement between 
the expected and observed distribution, and whether that outcome would be predicted under chance alone 
(Allouche et al., 2006; Liu et al., 2009). A TSS value of +1 is considered perfect agreement between the observed 
and expected distributions, whereas a value < 0 defi nes a model which has a predictive performance no better 
than random (Allouche et al., 2006). TSS has been shown to produce the most accurate predictions (Jiménez-
Valverde et al., 2011). Values of TSS < 0.2 can be considered as poor, 0.2–0.6 as fair to moderate and > 0.6 as 
good (Landis, Koch, 1977)

Relat ionships  between body s ize  and habitat  qual i ty
Geographic variation in size has been found to be correlated with a variety of abiotic and biotic 

environmental factors. For instance, shells in the land snail Albinaria idaea (Gastropoda, Clausiliidae) are 
larger in regions of high temperature, and are generally larger in areas with higher rainfall (Welter-Schultes, 
2000). In an extensive literature review shell size in terrestrial gastropods individualistic responses have been 
noted along moisture, temperature/insolation, and calcium availability gradients (Goodfriend, 1986), although 
the author could not identify universal ecological predictors. Most likely synergetic interactions between them 
could be the best explanation of the size variations resulting from the infl uence of local environmental and/or 
climate factors (Proćków et al., 2017), where maximum sizes are attained at environmental optima (Rensch, 
1932, 1939; Terentiev, 1970). Our assumption is that these conditions are adequately refl ected in the projected 
habitat quality for the species.

Th ere was a high degree of correlation among the shell traits related to body size (Pearson correlations 
between shell height (H) and the shell diameter (D), and the number of whorls (Wh) was 0.90 and 0.85, 
respectively. Th erefore shell height (H) was selected as a representative proxy of body size.

We tested the relationship between body size and projected habitat quality with linear mixed models 
(LMMs) that we fi tted using the ‘Mixed Model’ module in the jamovi computer soft ware (Th e jamovi project, 
2020). Th is mixed method allowed to address the fact that because we measured multiple individuals from 
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the same populations, we violated the models’ assumption of spatial independence. Th e sampling location 
was included as a random factor and the variance explained by the fi xed terms in the regression models was 
expressed as marginal R2   and adopted as a measure of functional accuracy.

Results

Delete  Species  dis tr ibut ion model l ing and se lect ion
Aft er removing duplicate occurrences, we used 85 occurrences to generate the 

SDMs. We selected thirteen non-collinear variables for constructing the models. Th ese 
represent the bioclimate (mean diurnal range, isothermality, precipitation seasonality, and 
precipitation of warmest quarter), topography (eastness, northness, slope, and topographic 
position index), NDVI for February, April and June, and soil properties (cation exchange 
capacity and silt content). 

Th e outputs of the SDM algorithms varied in terms of discrimination accuracy 
evaluated by the AUC and TSS (table 1).

According to these results, the Random forests (RF) model demonstrates the best 
preformance (AUC = 0.98, TSS = 0.89), whereas the performance of the BIOCLIM model 
is behind the rest of the employed SDMs (AUC = 0.65, TSS = 0.31). 

In all cases we found a positive, signifi cant (p < 0.001) relationship between shell height 
(H) and habitat quality as projected by the models, with larger individuals in high-quality 
areas (table 2).

Based on these fi ndings, the most 
biologically meaningful model has been 
constructed using the Bayesian additive 
regression trees (BART) algorithm, which 
has outperformed other SDM algorithms 
of the employed suite, with the highest 
marginal R2 (0.210) and lowest AIC 
(2987.4). Th e linear relationship, derived 
from the linear mixed model, between 
habitat quality predicted by the BART 
model and shell height is shown in fi gure 2. 
Treading on the heels of the BART model 
and displaying good performance is the 
Boosted Regression Trees (BRT) model, 
with a marginal R2 only somewhat lower 
(0.192) and AIC slightly higher (2991.5). 
Interestingly, BIOCLIM, the vet of SDMs 
(Nix, 1986), according to the applied 
criteria (aside from AIC), appears to have 
performed better than some of the other 
algorithms in the suite, including machine 
learning methods. 

Analys is  of  the  environmental 
niche using BARTs

Based on the results of the preceding 
tests, the Bayesian additive regression 
trees (BART) algorithm has been selected 
to perform an indepth analysis of the 
niche of the snail V. turgida in relation 
to listed environmental predictors (see 
above).

T a b l e  1 .  Discrimination accuracy of employed  SDM 
algorithms*

SDM methods AUC TSS
BIOCLIM 0.65 0.31
Generalized Linear Model (GLM) 0.91 0.75
MaxLike 0.88 0.70
Random forests (RF) 0.98 0.89
Boosted Regression Trees (BRT) 0.93 0.78
Support Vector Machines (SVM) 0.96 0.81
Bayesian additive regression trees (BART) 0.89 0.61

*See abbreviations in the text.
T a b l e  2 .  Functional accuracy of employed SDM 
algorithms*

SDM methods Estimated 
β ± SE R2 AIC**

BIOCLIM 6.02 ± 1.734 0.107 4082.0
Generalized Linear Model 
(GLM)

3.33 ± 0.580 0.098 3008.3

MaxLike 3.73 ± 0.997 0.054 3016.6
Random forests (RF) 6.43 ± 1.213 0.142 3013.0
Boosted Regression Trees  
(BRT)

9.48 ± 1.376 0.192 2991.5

Support Vector Machines 
(SVM)

3.26 ± 0.703 0.075 3008.1

Bayesian additive 
regression trees (BART)

5.88 ± 0.845 0.210 2987.4

*See abbreviations in the text.  
**AIC — Akaike information criterion (Aho et al., 2014).
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Bayesian additive regression trees (BART) are a new alternative to other popular 
classifi cation tree methods. In computer science, BARTs are used for everything from 
medical diagnostics to self-driving car algorithms, however they have yet to fi nd widespread 
application in ecology and in predicting species distributions. Running SDMs with BARTs 
has recently been greatly facilitated by the development of an R package, ‘embarcadero’ 
(Carlson, 2020), including an automated variable selection procedure being highly eff ective 
at identifying informative subsets of predictors. Also the package includes methods for 
generating and plotting partial dependence curves.

Biocl imatic  var iables
Nineteen bioclimatic variables from the WorldClim base were used in the species 

distribution modelling (their codes and names are available here: https://worldclim.org/
data/bioclim.html; accessed 26.04.2020). 

Five bioclimatic variables were identifi ed as an informative subset of predictors: 
BIO17 = Precipitation of Driest Quarter, BIO16 = Precipitation of Wettest Quarter, 
BIO5 = Max Temperature of Warmest Month, BIO9 = Mean Temperature of Driest 
Quarter, and BIO10 = Mean Temperature of Warmest Quarter, which capture the basic 
bioclimatic requirements of the snail. On-topic accuracy measures for the model are 
presented in table 3. 

Within this subset the modelling brought out the high importance of BIO17 = 
Precipitation of Driest Quarter. Th e driest quarter in the study area broadly coincides with 
the cold season; therefore BIO17 can be considered a proxy for snow depth. Snow is a 
highly eff ective insulator and can provide a signifi cant buff er against winter temperature 
extremes (Sturm et al., 2001; Zhang, 2005; Nicolai, Ansart, 2017). Here, in the case of 
V. turgida, highly suitable areas are those where the cold season precipitation is above 
170 mm (projected habitat suitability above 70 %), whereas below that level suitability 
rapidly decreases to a projected 30 % and less (fi g. 3).

A positive, signifi cant relationship was found between shell height and habitat quality 
as projected by the model, with larger individuals in bioclimatically more suitable areas.   

Fig. 2. Linear relationship (solid line) and 95 % confi dence interval (gray area) between habitat quality predicted 
by the BART model (x-axis) and shell height (H in millimeters, y-axis), derived from the linear mixed model.

T a b l e  3 .  Accuracy measures for the  BART model based on bioclimatic variables

AUC TSS Estimated 
β ± SE t-test p R2 AIC

0.854 0.620 7.06 ± 0.991 7.13 < 0.001 0.249 2968.8
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Topographic  var iables
We used a set of topographic variables 

including elevation (although there are 
opposing views on whether to include 
elevation as a predictor in SDMs or not; see, 
for example, Hof et al., 2012), slope, aspect 
(eastness, northness), terrain roughness 
index (Wilson et al., 2007) SAGA-GIS 
topographic wetness index (Boehner 
et al., 2002), and topographic position 
index (Guisan et al., 1999). Importantly, 
strong relationships between body size 
of V. turgida and elevational gradients 
have been reported (Baidashnikov, 1985; 
Sulikowska-Drozd, 2001).

Th ree topographic variables were 
identifi ed as an informative subset of 
predictors: elevation, SAGA-GIS topographic 
wetness index (TWI), and terrain roughness 
index (tri). Corresponding accuracy measures 
for the model are presented in table 4. 

Th ere is a general hump-shaped relationship between the habitat suitability values and 
elevation. Highest projected habitat suitability, using a 50 % habitat suitability threshold (Waltari, 
Guralnick, 2009), is shown to occur between elevations of around 200 and 580 m a. s. l.

TWI, another topographic variable of recognized importance, calculates the capacity of 
water accumulation of each pixel in a watershed. Pixels with higher TWI values have higher 

Fig. 3. Partial dependence plot for BIO17 = Precipitation 
of Driest Quarter; gray area = 95 % confi dence interval.

T a b l e  4 .  Accuracy measures for the BART model based on topographic variables

AUC TSS Estimated 
β ± SE t-test p R2 AIC

0.879 0.639 6.68 ± 0.803 8.32 < 0.001 0.263 2985.5

Fig. 4. Partial dependence plot for topographic 
wetness index (TWI).

Fig. 5. Partial dependence plot for terrain roughness 
index (tri).
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capacity of water accumulation (Besnard et al., 2013) or, in other words, being “wetter”. Th e 
index is highly correlated with several soil attributes such as horizon depth, silt percentage, 
organic matter content, and phosphorus (Moore et al., 1993), can be used to simulate the 
status of soil moisture, which also has an infl uence on soil pH (Song, Cao, 2017). In our case, 
increasing values of TWI in relation to projected habitat suitability show a steady downward 
trend (fi g. 4), meaning habitats that are “too wet” do not favour the species. Indeed, V. turgida 
occurs in very moist woodland (Kerney et al., 1983), however it has also been shown that 
the snail avoids very damp places (Urbański, 1939), so presumably our modelling results are 
consistent with these fi ndings based upon observations made in the fi eld. 

Finally, terrain roughness (‘tri’) provides a description of the terrain profi le and surface 
heterogeneity. Such heterogeneity plays an important role in catchment-related hydrological 
responses by driving the fl ow direction, water runoff  velocity, water accumulation, and 
soil moisture (Bogaart, Troch, 2006). Similarly, topographic variation strongly infl uences 
the accumulation and heterogeneity of mountain/alpine snow cover (Grünewald, 2013). 
Together these factors regulate the water availability in soil, directly infl uence vegetation and 
thus can be assumed to be essential for shaping the habitat of V. turgida, but because of these 
multiple associations ‘tri’ may not itself be the driver of the species’ distribution (Bemmels, 
2018). In the Ukrainian Carpathians the species appears to prefer areas of medium to high 
terrain roughness, where projected habitat suitability reaches its highest value (fi g. 5).

Th e relationship between shell height and habitat quality as projected by the model 
was found positive and statistically signifi cant, with larger individuals in areas of preferred 
topography.

Normal ized di f ference  vegetat ion index (NDVI)
Monthly NDVI were used to build the SDM. Th ere was barely a selection of an 

informative subset of predictors: most monthly NDVIs were retained for modelling, except 
for February and June. Accuracy measures for the model are presented in table 5. 

Amongst the monthly NDVIs,  relatively more important appear those characterizing 
April and May, when vegetation activity, lower in the winter months, signifi cantly increases 
(Páscoa et al., 2018).

Th e relationship between shell height and habitat quality as projected by the model based 
on monthly NDVIs was found positive and statistically signifi cant, although fairly weak.

Soi l  propert ies
Th e following topsoil (0–5 cm) physical and chemical properties were tested: bulk 

density (cg/cm3), clay content (g/kg), coarse fragments (g/kg), sand content (g/kg), silt 
content (g/kg), cation exchange capacity at pH = 7 (mmol(c)/kg), soil organic carbon (dg/
kg), pH in water (pH*10), and one derived property, organic carbon density (g/dm3), was 
included. Similar to NDVI, there was a wide selection of predictors used to build the BART 
model: bulk density, clay content, coarse fragments, silt content, soil organic carbon, and 
pH in water. Accuracy measures for the model are presented in table 6. 
Table 5. Accuracy measures for the BART model based on the NDVI

AUC TSS Estimated 
β ± SE t-test p R2 AIC

0.894 0.667 4.790 ± 0.822 5.82 < 0.001 0.106 2996.6

T a b l e  6 .  Accuracy measures for the  BART model based on soil properties

AUC TSS Estimated 
β ± SE t-test p R2 AIC

0.914 0.640 4.920 ± 0.984 5.00 < 0.001 0.101 2766.2
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Expectedly, pH has been distinguished amongst the selected soil features as the most 
infl uential variable. According to the response, higher values of projected habitat suitability 
are maintained up to an estimated pH of 5.85, aft er which there is a steady decline (fi g. 6), 
meaning a preference in V. turgida towards acidity. In terms of variable importance, next 
and close to pH is the soil silt content, which reveals a comparable trend: higher values of 
projected suitability are maintained in habitats where soils contain lesser amounts of silt 
(we estimate below the level of 47 g/kg); above this estimate projected habitat suitability 
shows a steady decline (fi g. 7).

Th e relationship between shell height and habitat quality as projected by the model 
based on soil properties was found positive and statistically signifi cant, although, as in the 
NDVI case, fairly weak.

Our results are basically in agreement with those of several studies confi rming the 
importance of a number of soil characteristics as determinants of terrestrial gastropod 
distribution (summarized in: Ondina et al., 2004). General conclusions have been made 
on the infl uence of soil properties, which are considered to refl ect above all soil acidity and 
basicity, and secondly soil texture (Ondina et al., 2004).

On these grounds the quoted authors (Ondina et al., 2004) proposed a useful, as regards 
gastropod distribution, classifi cation of soils based on chemical and physical criteria, 
where one of the major chemical criteria is pH (consequently, acid and less acid soils), and 
major physical criteria are textual factors, soil aeration and soil moisture content. Physical 
criteria allow to distinguish two categories, namely well-drained coarse-textured soils (high 
proportions of gravel and sand, high aeration, low proportions of silt and clay, low soil 
moisture content) and wet fi ne-textured soils (higher proportions of silt and clay, higher 
soil moisture content). Regarding V. turgida, we can say the species prefers acid soils and 
well-drained coarse-textured soils, for which silt content has served an effi  cient proxy. 

The ENVIREM data  set
All 16 climatic and two topographic variables from the ENVIREM dataset were used to 

produce the BART models. Th e fi nal recommended variable list consists of three variables: 
PETColdestQuarter = mean monthly PET of coldest quarter, PETseasonality = monthly 
variability in potential evapotranspiration, and ‘tri’ = terrain roughness index. On-topic 
accuracy measures for the model are presented in table 7. 

Fig. 6. Partial dependence plot for pH water (phh2o). Fig. 7. Partial dependence plot for silt content (SLT).
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Th e automated variable selection procedure has put ahead of others ‘tri’, the terrain 
roughness index, which behaves exactly in the same way as when included to the set of 
topographic variables. 

Th e next two are related to potential evapotranspiration, which is considered to model 
relationships between water-energy requirements and productivity (Currie, 1991; Field et 
al., 2005; Fick, Hijmans, 2017). In the fi rst place mean monthly PET of coldest quarter was 
selected, in the second — monthly variability in potential evapotranspiration. Th e latter is 
oft en viewed as a measure of seasonality of moisture available for vegetation (Zomer et al., 
2014) and also is considered to express continentality of the climate (Metzger et al., 2013). 
In both cases the relationship between the projected habitat suitability values and values 
of the corresponding variables are hump-shaped, meaning, according to Shelford’s law of 
tolerance, there is an optimum below or above which a species cannot survive. Tolerance 
limits regarding the PETColdestQuarter factor could be related to dormancy, whereas 
PETseasonality could be a refl ection of adaptation to the seasonal amplitude in ambient 
temperature, where diff erences, either big or small, between seasonal temperature extremes 
are suggested to be limiting factors. 

Th e relationship between shell height and habitat quality as projected by the model 
based on the ENVIREM data set was found positive and statistically signifi cant, and 
appeared notably strong. 

Discussion and conclusions
Our model species, the terrestrial snail V. turgida, provided an opportunity to test 

hypotheses concerning SDM predictions produced by a number of algorithms commonly 
used or recently arising due to continuing eff orts being put into the refi nement of modeling 
approaches and construction of SDMs (Melo-Merino et al., 2020). Because there is no single 
‘best’ algorithm we, as recommended (Qiao et al., 2015), have tested a suite of algorithms 
for predictive ability and based on the results of these tests selected an algorithm for our 
particular purpose, which is to describe the environmental niche of the considered species 
in a variety of perspectives. 

In modeling exercises, not only the selection of appropriate modeling techniques, but 
methods of measuring accuracy are crucial to the outcome (Shabani et al., 2018). Commonly 
for this purpose diagnostic metrics are used, such as AUC and TSS. However, a high model 
fi t does not necessarily translate into highly consistent spatial or environmental niche 
predictions (Aguirre-Gutiérrez et al., 2013), and conclusions have been made of the inability 
of current evaluation metrics to assess the biological signifi cance of SDMs (Fourcade et al., 
2018). Indeed, there has been insuffi  cient attention to evaluating the biological meaning of 
SDM outputs (Wittmann et al., 2016). In our study we have made an attempt to confront 
the output of the produced SDMs with biological performance data, namely body size of 
the snails. In general, body size strongly correlates with development times, fecundity, 
physiological performance, competitiveness and vulnerability to predation, and therefore 
is considered a fundamental species trait (Wardhaugh et al., 2013). Within species, large 
individuals oft en achieve higher reproductive fi tness and have greater environmental 
tolerances than smaller individuals (Shine, 1989). Predictions from SDMs are generally 
thought to be good indicators of habitat suitability, and thus of species’ performance 
(Th uiller et al., 2010), consequently SDMs can be validated by checking whether the areas 
projected to have the greatest habitat quality are occupied by individuals or populations 

T a b l e  7 .  Accuracy measures for the BART model based on variables of the ENVIREM dataset

AUC TSS Estimated 
β ± SE t-test p R2 AIC

0.912 0.717 8.130 ± 0.825 9.85 < 0.001 0.327 2959.1
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with higher than average fi tness (Mammola et al., 2019), and such correlations already have 
been found (for instance, Th uiller et al., 2010; Nagaraju et al., 2013; Wittmann et al., 2016; 
Mammola et al., 2019). 

We too, hypothesized a positive and statistically signifi cant relationship between 
observed in the fi eld body size of the snail V. turgida and modelled habitat suitability, tested 
this relationship with linear mixed models, and found that indeed, larger individuals tend 
to occupy high-quality areas, as predicted by the SDMs. However, by testing several SDM 
algorithms, we found that some of them performed better, others not so good, in terms of 
expounding this correlation. In other words, their functional accuracy (Warren et al., 2020) 
was diff erent. Th erefore, marginal R2 , expressing the variance explained by the fi xed terms 
in the regression models, was adopted as a measure of functional accuracy, and used to 
rank the SDMs accordingly. In this respect, the Bayesian additive regression trees (BART) 
algorithm (Carlson, 2020) gave the best result, despite the low AUC and TSS. Interestingly, 
by functional accuracy the BIOCLIM model outperformed even some machine learning 
SDM methods. 

Our study confi rms the possibility to correlate SDM projections with functional 
traits that serve as proxies for fi tness and we propose to use marginal R2  to validate these 
correlations and their strength. 

By restricting our analysis to the BART algorithm only, a variety of sets of 
environmental variables commonly or less used in the construction of SDMs were explored 
and tested according to their functional accuracy. In this respect, the SDM produced using 
the ENVIREM data set gave the best result. Indeed, variables in this data set are worth 
consideration in SDM applications, especially as many of the variables have direct links to 
processes important for species ecology (Title, Bemmels, 2018), particularly those related 
to potential evapotranspiration (PET). However, despite this importance, PET up to now 
is poorly represented in species distribution modelling (Bradie, Leung, 2017). Satisfactory 
results were obtained using the sets of topographic and bioclimatic variables, despite 
reservations against the use of elevation as a predictor or that correlations between climate 
and species’ distributions could be refl ecting the spatial structure of climate rather than 
real biological process (Beale et al., 2008; etc.). On the contrary, models using vegetation 
indices and edaphic variables in terms of functional accuracy performed poorly, although 
the corresponding values of AUC and TSS, considered ‘good’ and ‘very good’, indicate 
the opposite. We assume the low functional signifi cance of these SDMs is due to scale, 
because model quality depends not only on the algorithm and applied measure of model 
fi t, but also the scale at which it is used. Th ere are many indications that climate impacts on 
species distributions are most apparent at macro-scales (Vicente et al., 2014), whereas plant 
biomass or soil may be a more important at the local scale. Th is also highlights the need to 
consider an appropriate scale for predictions, as vegetation and edaphic complexity is likely 
to be degraded by the use of coarse resolution rasters.

Despite some shortcomings, the use of SDMs has allowed to identify some of the 
important environmental and climatic features that characterize the niche of V. turgida. 
Including other biologically relevant parameters and non-climate variables at apprpropriate 
scales should contribute important information and help to gain a deeper insight into the 
niche of the species.
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