Shape Analysis of Otoliths of the Round goby, Neogobius melanostomus (Gobiiformes, Gobiidae), from the Black Sea Basin

Keywords: morphology, ear stones, bony-fishes, Ponto-Caspian gobies

Abstract

This study aims to assess the round goby Neogobius melanostomus stocks discriminability based on the shape of its otoliths. Recent otolith-shape-based species and stock discrimination studies have been using otoliths’ contours in sagittal plane and we are following this approach. We hypothesized existence of several geographically separated populations of the round goby. Round gobies have been sampled in different localities of the North-Western Black Sea, otoliths were removed in course of the full biological analysis and photographed in sagittal plane. Principal components of the otolith contour were processed by linear discriminant analysis aiming to cross-validate the discriminability of round gobies of different geographical locations, which would allow for showing different stocks or populations. This research allows for the conclusion of limited applicability of otoliths’ contours for discrimination of stocks or populations of round goby based on multiple annual samples. However neither classification matrices of discriminant analysis nor cluster analysis dendrograms show some single pattern except for the high year to year otoliths variability, which allows for a hypothesis of a strong response of contour formation to habitat and feeding conditions. This assumption has to be definitely verified by further research.

References

Agüera, A., Brophy, D. 2011. Use of saggital otolith shape analysis to discriminate Northeast Atlantic and Western Mediterranean stocks of Atlantic saury, Scomberesox saurus saurus (Walbaum). Fisheries Research, 110 (3), 465−471.

https://doi.org/10.1016/j.fishres.2011.06.003

Allemand, D., Mayer-Gostan, N., De Pontual, H., Boeuf, G., Payan, P. 2007. Fish otolith calcification in relation to endolymph chemistry. In: Bäuerlein, E. ed. Handbook of biomineralization. Wiley-VCH Verlag, 291−308.

Bird, J. L., Eppler, D. T., Checkley, D. M. 1986. Comparisons of herring otoliths using Fourier series shape analysis. Canadian Journal of Fisheries and Aquatic Sciences, 43, 1228-1234.

Bonhomme, V., Picq, S., Gaucherel, C., Claude, J. 2014. Momocs: Outline analysis using R. Journal of Statistical Software, 56 (13), 1-24.

Brown, J. E., Stepien, C. A. 2008. Ancient divisions, recent expansions: phylogeography and population genetics of the round goby Apollonia melanostoma. Molecular Ecology, 17, 2598-2615.

Brown, J. E., Stepien, C. A. 2009. Invasion genetics of the Eurasian round goby in North America: tracing sources and spread patterns. Molecular Ecology, 18, 64-79.

Campana, S. E., Casselman, J. M. 1993. Stock discrimination using otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences, 50, 1062−4083.

Campana S. E., Gagné J. A., McLaren J. W. 1995. Elemental fingerprinting of fish otoliths using ID-ICPMS. Marine Ecology Progress Series, 122, 115−120.

Cardinale, M., Doering-Arjes, P., Kastowsky, M., Mosegaard, H. 2004. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 61, 158−167.

Castonguay, M., Simard, P., Gagnon, P. 1991. Usefulness of Fourier analysis of otolith shape for Atlantic mackerel (Scomber scombrus) stock discrimination. Canadian Journal of Fisheries and Aquatic Sciences, 48, 296−302.

Claude, J. 2008. Morphometrics with R. Springer-Verlag, New York, USA, 1-318.

Diripasko, O. A., Zabroda, T. A. 2017. Morphometric variability in round goby Neogobius melanostomus (Perciformes: Gobiidae) from the Sea of Azov. Zoosystematica Rossica, 26 (2), 392-405.

Fernandez-Jover, D., Sanchez-Jerez, P. 2015. Comparison of diet and otolith growth of juvenile wild fish communities at fish farms and natural habitats. ICES Journal of Marine Science, 72, 916−929.

González-Salas, C., Lenfant, P. 2007. Interannual variability and intraannual stability of the otolith shape in European anchovy Engraulis encrasicolus (L.) in the Bay of Biscay. Journal of Fish Biology, 70 (1), 35-49.

Hüssy, K. 2008. Otolith shape in juvenile cod (Gadus morhua): ontogenetic and environmental effects. Journal of Experimental Marine Biology and Ecology, 364, 35−41.

Iwata, H., Ukai, Y. 2002. SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. Journal of Heredity, 93 (5), 384-385.

Kuhl, F. P., Giardina, C. R. 1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing, 18, 236-258.

Ladroit, Y., Maolagáin, C. Ó., Horn, P. L. 2017. An investigation of otolith shape analysis as a tool to determine stock structure of ling (Genypterus blacodes). In: New Zealand Fisheries Assessment Report 2017/24. Ministry for Primary Industries, 1-16.

Lord, C., Morat, F., Lecomte-Finiger, R., Keith, P. 2012. Otolith shape analysis for three Sicyopterus (Teleostei: Gobioidei: Sicydiinae) species from New Caledonia and Vanuatu. Environmental Biology of Fish, 93, 209-222.

Mahé, K., Ider, D., Massaro, A., Hamed, O., Jurado-Ruzafa, A., Gonçalves, P., Anastasopoulou, A., Jadaud, A., Mytilineou, Ch., Elleboode, R., Ramdane, Z., Bacha, M., Amara, R., de Pontual, H., Ernande, B. 2019. Directional bilateral asymmetry in otolith morphology may affect fish stock discrimination based on otolith shape analysis. ICES Journal of Marine Science, 76 (1), 232-243.

Menezes, R., Rahnama, B. 2019. Variation in otolith morphometry indicates stock segregation for Tigertooth croaker (Otolithes ruber) along the south coast of Iran. In: II Workshop latinoamericano de otolitos y otras estructuras calcificadasat, 18 al 30 de agosto de 2019, Buenos Aires. Buenos Aires, Argentina.

Mérigot, B., Letourneur, Y., Lecomte-Finiger, R. 2007. Characterization of local populations of the common sole Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics and shape analysis. Marine Biology, 151, 997−1008.

https://doi.org/10.1007/s00227-006-0549-0

Mille, T., Mahé, K., Cachera, M., Villanueva, M. C., de Pontual, H., Ernande, B. 2016. Diet is correlated with otolith shape in marine fish. Canadian Journal of Fisheries and Aquatic Sciences, 555, 167−184.

Molony, B. W., Choat, J. H. 1990. Otolith increment widths and somatic growth rate: the presence of a time-lag. Journal of Fish Biology, 37, 541−551.

Nagasawa, H. 2013. The molecular mechanism of calcification in aquatic organisms. Bioscience, Biotechnology, and Biochemistry, 77, 1991−1996.

Ojaveer, H., Galil, B.S., Lehtiniemi, M., Christoffersen, M., Clink, S., Florin, A.-B., Gruszka, P., Puntila, R., Behrens, J. W. 2015. Twenty five years of invasion: management of the round goby Neogobius melanostomus in the Baltic Sea. Management of Biological Invasions, 6 (4), 329-339.

Orlov, A. M., Afanasyev, P. K. 2013. Otolithometry as possible tool of the analysis of Pacific cod Gadus macrocephalus (Gadidae, Teleostei) population structure. Amurian Zoological Journal, 5 (3), 327-331 [In Russian].

Payan, P., de Pontual, H., Boeuf, G., Mayer-Gostan, N. 2004. Endolymph chemistry and otolith growth in fish. Comptes Rendus Palevol, 3, 535−547.

Rashidabadi, F., Abdoli, A., Tajbakhsh, F., Nejat, F., Avigliano, E. 2020. Unravelling the stock structure of the Persian brown trout by otolith and scale shape. Journal of Fish Biology, 96 (2), 307-315.

Reig-Bolaño, R., Marti-Puig, P., Gallego-Jutgla, E, Masferrer, G., Lombarte, A., Ferrer-Arnau, L., Parisi-Baradad, V. 2011. Feature selection for analyzing and retrieving fish otoliths using Elliptic Fourier Descriptors of shapes. In: 7th International Conference on Next Generation Web Services Practices, 19-21 Oct. 2011 (290-295). Salamanca, Spain, 290-295.

Roche, K. F., Janač, M., Jurajda, P. 2013. A review of gobiid expansion along the Danube-Rhine corridor - geopolitical change as a driver for invasion. Knowledge and Management of Aquatic Ecosystems, 411, 01.

Sanchez-Jerez, P., Gillanders, B. M., Kingsford, M.J. 2002. Spatial variability of trace elements in fish otoliths: comparison with dietary items and habitat constituents in seagrass meadows. Journal of Fish Biology, 61, 801−821.

Schwarzhans, W., Ahnelt, H., Carnevale, G., Japundžić, S., Bradić, K., Bratishko, A. 2017. Otoliths in situ from Sarmatian (Middle Miocene) fishes of the Paratethys. Part III: Tales from the cradle of the Ponto-Caspian gobies. Swiss Journal of Palaeontology, 136, 45-92.

Song, J., Dou, S., Cao, L., Liu, J. 2020. Sulcus and otolith outline analyses: complementary tools for stock discrimination in white croaker Pennahia argentata in northern Chinese coastal waters. Journal of Oceanology and Limnology, 38 (5), 1559-1571.

Song, J., Zhao, B., Liu, J., Cao, L., Dou, S. 2018. Comparison of otolith shape descriptors and morphometrics for stock discrimination of yellow croaker along the Chinese coast. Journal of Oceanology and Limnology, 36 (5), 1870-1879.

Song, J., Zhao, B., Liu, J., Cao, L., Dou, S. 2019. Comparative study of otolith and sulcus morphology for stock discrimination of yellow drum along the Chinese coast. Journal of Oceanology and Limnology, 37, 1430-1439.

Souza, A.T., Soukalová, K., Děd, V., Šmejkal, M., Moraes, K., Říha, M., Muška, M., Frouzová, J., Kubečka, J. 2020. Otolith shape variations between artificially stocked and autochthonous pikeperch (Sander lucioperca). Fisheries Research, 231, 105708.

Tuset, V. M., Farré, M., Otero-Ferrer, J. L., Vilar, A., Morales-Nin, B., Lombarte, A. 2016. Testing otolith morphology for measuring marine fish biodiversity. Marine and Freshwater Research, 67, 1037-1048.

Vieira, A. R., Neves, A., Sequeira, V., Paiva, R. B., Gordo, L. S. 2014. Otolith shape analysis as a tool for stock discrimination of forkbeard (Phycis phycis) in the Northeast Atlantic. Hydrobiologia, 728, 103-110.

Vignon, M., Morat, F. 2010. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Marine Ecology Progress Series, 411, 231-241.

Walther, B., Thorrold, S. 2006. Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Marine Ecology Progress Series, 311, 125-130.

Yu, X., Cao, L., Liu, J., Zhao, B., Shan, X., Dou, S. 2014. Application of otolith shape analysis for stock discrimination and species identification of five goby species (Perciformes: Gobiidae) in the northern Chinese coastal waters. Chinese Journal of Oceanology and Limnology, 32(5), 1060-1073.

Zhang, C., Ye, Z., Li, Z., Wan, R., Ren, Y., Dou, S. 2016. Population structure of Japanese Spanish mackerel Scomberomorus niphonius in the Bohai Sea, the Yellow Sea and the East China Sea: evidence from random forests based on otolith features. Fisheries Science, 82, 251-256.

https://doi.org/10.1007/s12562-016-0968-x

Zhao, B., Liu, J., Song, J., Cao, L., Dou, S. 2017. Evaluation of removal of the size effect using data scaling and elliptic Fourier descriptors in otolith shape analysis, exemplified by the discrimination of two yellow croaker stocks along the Chinese coast. Chinese Journal of Oceanology and Limnology, 35 (6), 1482-1492.

Zhao, B., Liu, J., Song, J., Cao, L., Dou, S. 2018. Otolith shape analysis for stock discrimination of two Collichthys genus croaker (Pieces: Sciaenidae) from the northern Chinese coast. Journal of Oceanology and Limnology, 36 (3), 981-989.

Published
2021-07-01
How to Cite
Zamorov, V., Zamorova, M., Krupko, D., Matvienko, N., Leonchyk, Y., & Kvach, Y. (2021). Shape Analysis of Otoliths of the Round goby, Neogobius melanostomus (Gobiiformes, Gobiidae), from the Black Sea Basin. Zoodiversity, 55(4). Retrieved from http://ojs.akademperiodyka.org.ua/index.php/Zoodiversity/article/view/207
Section
Morphology