Covariation in Shapes Between the Sternum and Pelvis in Aquatic Birds with Different Locomotor Modes

Keywords: surface swimmers, wing-propelled divers, foot-propelled divers, geometric morphometrics, morphological integration

Abstract

Birds associated with aquatic environments have diverse locomotor and foraging strategies. We hypothesize that aquatic birds have different covariation patterns in the shapes of the sternum and pelvis depending on the locomotor mode and the predominant use of wings or hind limbs when moving through the water. The study was conducted on 26 bird species, among which we identified three ecological categories: surface swimmers, wing- and foot-propelled divers. The last two categories included only species that dive from the water surface. Geometric morphometric methods were applied to analyze shapes, and covariance was investigated with two-block PLS analysis. We show that wing- and foot-propelled divers have different patterns of covariation between sternum and pelvis shapes. A narrower, elongated and flattened sternum correlates with a shortened postacetabular region of a pelvis in wing-propelled divers. A widened and shortened sternum with a deep keel correlates with an elongated post-acetabular region of a pelvis in foot-propelled divers. Surface swimmers have a wide variety of combinations of sternum and pelvis shapes, which is apparently explained by their lower specialization for specific aquatic locomotion, and by the influence of diverse ecological factors.

References

Adams, D. C., Collyer, M. L. & Kaliontzopoulou, A. 2019. Geomorph: Software for geometric morphometric analyses. R package version 3.1.0. https://cran.r-project.org/package=geomorph

Anten-Houston, M. V., Ruta, M. & Deeming, D. C. 2017. Effects of phylogeny and locomotor style on the allometry of body mass and pelvic dimensions in birds. J. Anat. 231 (3), 342-358.

https://doi.org/10.1111/joa.12647

Bogdanovich, I. A. 2003. Morphological aspects of phylogeny of Hesperornithidae (Ornithurae, Aves). Vestn. Zool. 37 (6), 65-71. [In Ukrainian with English summary].

Bogdanovich, I. A. 2014. Origin and evolutionary morphological characteristics of terrestrial locomotion apparatus of birds. Vestn. Zool. 31, 1-80. [In Russian with English summary].

Chang, B., Croson, M., Straker, L., Gart, S., Dove, C., Gerwin, J. & Jung, S. 2016. How seabirds plunge-dive without injuries. Proceedings of the National Academy of Sciences, 113 (43), 12006-12011.

https://doi.org/10.1073/pnas.1608628113

Clifton, G. T. & Biewener, A. A. 2018. Foot-propelled swimming kinematics and turning strategies in common loons. Journal of Experimental Biology, 221, jeb168831.

https://doi.org/10.1242/jeb.168831

Dabelow, A. 1925. Die Schwimmanpassung der Vögel. Ein Beitrag zur biologischen Anatomie der Fortbewegung. Morphologisches Jahrbuch, 54, 288-321.

Davydenko, S., Mörs, T., & Gol'din, P. 2021. A small whale reveals diversity of the Eocene cetacean fauna of Antarctica. Antarctic Science, 33 (1), 81-88.

https://doi.org/10.1017/S0954102020000516

Dzeverin, I. 2020. The skull integration pattern and internal constraints in Myotis myotis-Myotis blythii species group (Vespertilionidae, Chiroptera) might be shaped by natural selection during evolution along the genetic line of least resistance. Evol Biol 47, 18-42.

https://doi.org/10.1007/s11692-019-09488-4

Felice, R.N. & O'Connor, P.M. 2014. Ecology and Caudal Skeletal Morphology in Birds: The Convergent Evolution of Pygostyle Shape in Underwater Foraging Taxa. PLoS One, 9 (2): e89737.

https://doi.org/10.1371/journal.pone.0089737

Flint, V. E., Boeme, R. L., Kostin, Y. V. & Kuznetsov, A. A. 1968. Birds of the USSR. Mysl, Moscow, 1-637 [In Russian].

Flint, V. E. 1991. Ordo Anseriformes. In: Ilichev V. D., ed. Fauna of the world: Birds: Handbook. Agropromizdat, Moscow, 60-68 [In Russian].

Frank, T. M., Dodson, P. & Hedrick, B. P. 2022. Form and function in the avian pelvis. J Morphol, 283 (6), 875-893.

https://doi.org/10.1002/jmor.21479

Fruciano, C. 2019. GeometricMorphometricsMix: Miscellaneous functions useful for geometric morphometrics. R package version 0.0.7.9000.

Gatesy, S. M. 1990. Caudofemoral musculature and the evolution of theropod locomotion. Paleobiology, 16, 170-186.

https://doi.org/10.1017/S0094837300009866

Ghazali, M., Moratelli, R. & Dzeverin, I. 2017. Ecomorph evolution in Myotis (Vespertilionidae, Chiroptera). J Mammal Evol 2, 475-484.

https://doi.org/10.1007/s10914-016-9351-z

Gladkov, N. A. 1949. Biological principles of bird flight. Izdatelstvo MOIP, Moscow, 1-247 [In Russian]

Gol'din, P., Startsev, D. & Krakhmalnaya, T. 2013. The anatomy of the Late Miocene baleen whale Cetotherium riabinini from Ukraine. Acta Palaeontologica Polonica 59 (4), 795-814.

https://doi.org/10.4202/app.2012.0107

Gol'din, P. 2014. Naming an innominate: pelvis and hindlimbs of Miocene whales give an insight into evolution and homology of cetacean pelvic girdle. Evol Biol 41, 473-479.

https://doi.org/10.1007/s11692-014-9281-8

Hammer, O., Harper, D. A. T. & Ryan, P. D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4, 1-9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

Hartman, F. A. 1961. Locomotor mechanisms of birds. Smithson. misc. collect., 143 (1), 1-91.

Heath, J. P., Gilchrist, H. G. & Ydenberg, R. C. 2006. Regulation of stroke pattern and swim speed across a range of current velocities: diving by common eiders wintering in polynyas in the Canadian Arctic. J. Exp. Biol. 209, 3974-3983.

https://doi.org/10.1242/jeb.02482

Hertel, F. & Campbell, K. E. 2007. The antitrochanter of birds: form and function in balance. Auk, 124 (3), 789-805.

https://doi.org/10.1093/auk/124.3.789

Hinic'-Frlog, S. & Motani, R. 2010. Relationship between osteology and aquatic locomotion in birds: determining modes of locomotion in extinct Ornithurae. J. Evol. Biol. 23, 372-385.

https://doi.org/10.1111/j.1420-9101.2009.01909.x

Ibáñez, B. & Tambussi, C. P. 2012. Foot-propelled aquatic birds: pelvic morphology and locomotor performance. Ital. J. Zool. 79 (3), 356-362.

https://doi.org/10.1080/11250003.2011.650713

Isakov, Y. A. 1952. Subfamily Anatinae. In: Dement'ev G. P. and Gladkov N. A., eds. The birds of the Soviet Union, vol. 4. Sovietskaya Nauka, Moscow, 344-635 [In Russian].

Jetz, W. W., Thomas, G. H. G., Joy, J. B. J., Hartmann, K. K. & Mooers, A. O. A. 2012. The global diversity of birds in space and time. Nature, 491, 444-448.

https://doi.org/10.1038/nature11631

Johansson, L. C. 2002. Swimming in Birds: Propulsive Mechanisms and Functional Morphology. PhD Thesis, Goteborg University, Goteborg.

Johansson, L. C. & Norberg, R. A. 2003. Delta-wing function of webbed feet gives hydrodynamic lift for swimming propulsion in birds. Nature, 424, 65-68.

https://doi.org/10.1038/nature01695

Johnsgard, P. A. 1987. Diving Birds of North America. NE: University of Nebraska Press, Lincoln. https://digitalcommons.unl.edu/bioscidivingbirds

Kaftanovskii, Y. M. 1951. Alcidine birds of the East Atlantic. MOIP, Moscow, 1-170 [In Russian].

Klingenberg, C. P. 2011. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour, 11, 353-357.

https://doi.org/10.1111/j.1755-0998.2010.02924.x

Kurochkin, E. N. 1971. Adaptive structural features and locomotion of waterfowl. In: Nichiporovich A. A., ed. Itogi nauki. Zoologiya pozvonochnyh 1969. VINITI, Moscow, 94-135 [In Russian].

Kurochkin, E. N. 1991. Familia Pelecanidae. In: Ilichev, V.D. ed. Fauna of the world: Birds: Handbook. Agropromizdat, Moscow, 44-45 [In Russian].

Livezey, B. C. & Humphrey, P. S. 1986. Flightlessness in Steamerducks (Anatidae: tachyeres): its morphological bases and probable evolution. Evolution, 40, 540-558.

https://doi.org/10.1111/j.1558-5646.1986.tb00506.x

Llimona, F. & del Hoyo, J. 1992. Order Podicipediformes. In: del Hoyo, J., Elliott, A., Sargatal, J., eds. Handbook of the birds of the world. Links edicions, Barcelona, 174-197.

Orkney, A., Bjarnason, A., Tronrud, B. C., & Benson, R. B. 2021. Patterns of skeletal integration in birds reveal that adaptation of element shapes enables coordinated evolution between anatomical modules. Nature Ecology & Evolution, 5 (9), 1250-1258.

https://doi.org/10.1038/s41559-021-01509-w

Ptushenko, E. S. 1952. The Order Anseriformes. In: Dement'ev, G. P., Gladkov, N. A., eds. The birds of the Soviet Union, vol. 4. Sovietskaya Nauka, Moscow, 247-636 [In Russian].

Raikow, R. J. 1970. Evolution of diving adaptations in the stiff-tailed ducks. Univ. Calif. publ. zool. 94:1-52

Raikow, R. 1985. Locomotor system. In: King, A. S., McLelland, J. eds. Form and Function in birds, vol. 3. Academic Press, London, 57-147.

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL http://www.R-project.org/

Revell, L. J. 2012. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217-223.

https://doi.org/10.1111/j.2041-210X.2011.00169.x

Rohlf, F. J. 2017. tpsDig, digitize landmarks and outlines, version 2.31. Department of Ecology and Evolution, State University of New York at Stony Brook

Schliep, K. P. 2011. phangorn: phylogenetic analysis in R. Bioinformatics, 27 (4), 592-593.

https://doi.org/10.1093/bioinformatics/btq706

Shatkovska, O. V., Ghazali, M., Mytiai, I. S. & Druz, N. 2018. Size and shape correlation of birds' pelvis and egg: Impact of developmental mode, habitat, and phylogeny. Journal of Morphology, 279, 1590-1602.

https://doi.org/10.1002/jmor.20888

Shatkovska, O.V. & Ghazali, M. 2020. Integration of skeletal traits in some passerines: impact (or the lack thereof) of body mass, phylogeny, diet and habitat. J Anat, 236, 274-287.

https://doi.org/10.1111/joa.13095

Shealer, D. A. 2002. Foraging behavior and food of seabirds. In: Schreiber, E. A. & Burge J., eds. Biology of marine birds, 14, 137-177.

https://doi.org/10.1201/9781420036305.ch6

Shoop, W. & Tilson, E. 2022. Plunge diving by Brown Pelicans resembles a Split-S Turn. Journal of Field Ornithology, 93 (1), 2.

https://doi.org/10.5751/JFO-00064-930102

Shmalgauzen, I. I. 1982. Organizm kak celoe v individual'nom i istoricheskom razvitii [The organism as a whole in individual and historical development]. Nauka, Moscow, 1-383 [In Russian]

Spangenberg, E. P. 1951. The Order Ralliformes. In: Dement'ev, G. P. and Gladkov, N. A., eds. The birds of the Soviet Union, vol. 3. Sovietskaya Nauka, Moscow, 604-677 [In Russian].

Stegmann, B. K. 1949. The center of gravity of birds and its significance for the position of wings during flight. Izvestiya akademii nauk. Seriya biologicheskaya 2, 208-217.

Stoessel, A., Kilbourne, B. M. & Fischer, M. S. 2013. Morphological integration vs. ecological plasticity in the avian pelvic limb skeleton. J. Morphol. 274, 483-495.

https://doi.org/10.1002/jmor.20109

Storer, R. W. 1960. Evolution in the diving birds. In: Bergman, G., Donner, K. O., Haartman, L. V., eds. Proceedings of the Twelth International Ornithological Congress. University of Helsinki, Zoological Institute, Finland, 694-707.

Sudilovskaya, A. M. 1951. The Order Pelecaniformes. In: Dement'ev G. P., Gladkov, N. A. eds. The birds of the Soviet Union, vol. 1. Sovietskaya Nauka, Moscow, 13-68 [In Russian].

Sych, V. F. 1992. On the role of morpho-functional correlations in aberrant locomotory system appearance in Galliform birds. Vestn. Zool., 4, 64-68.

Townsend, C. W. 1909. The use of wings and feet by diving birds. Auk, 26, 234-248.

https://doi.org/10.2307/4070795

Watanuki, Y., Kato, A., Naito, Y., Robertson, G. & Robinson, S. 1997. Diving and foraging behaviour of Ade' lie penguins in areas with and without fast sea-ice. Polar Biol. 17, 296-304.

https://doi.org/10.1007/PL00013371

Zeffer, A., Johansson, L. C. & Marmebro, A. 2003. Functional correlation between habitat use and leg morphology in birds (Aves). Biol. J. Linn. Soc. Lond. 79, 461-484.

https://doi.org/10.1046/j.1095-8312.2003.00200.x

Published
2023-04-27
How to Cite
Shatkovska, O. V., & Ghazali , M. (2023). Covariation in Shapes Between the Sternum and Pelvis in Aquatic Birds with Different Locomotor Modes. Zoodiversity, 57(3). https://doi.org/10.15407/zoo2023.03.251
Section
Morphology