Gregarine Stylocephalus oblongatus (Apicomplexa, Eugregarinida, Gregarinidae) from the Intestine of Opatrum sabulosum (Coleoptera, Tenebrionidae) in the Reclamation Areas of Pokrovsky Mining and Processing Plant: the First Report and Morphometric Variabil
Abstract
The peculiarities of variability of forms and sizes of the gregarine Stylocephalus oblongatus (Hammerschmidt, 1838) Watson, 1916 in the intestines of the Opatrum sabulosum (Linnaeus, 1761) from the sites of reclamation of lands disturbed by mining industry in the south of the area of the Steppe Dnipro were investigated. This is a new record for the protozoan fauna of Ukraine. The prevalence of host infection was 7.44 %. To determine the limits of variability, a sample of 71 specimens was used. Gamonts of S. oblongatus were analysed by 15 linear characteristics and 18 indices of the ratio of these characteristics. For linear parameters, the average coefficient of variation was 33 %. The minimum values of the coefficient of variation were characteristic for the lengths of the gamont, protomerite and their ratio. The principal component analysis identified 4 principal components, the value of which was greater than 1. Together they explained 73 % of the variability. Cluster analysis identified 4 clusters that can be explained as 2 morphotypes and 2 morphosubtypes. The greatest contribution to the overall variability of S. oblongatus gamonts is made by the position of the cell nucleus of the gamont in relation to the septum, the width of the septum and protomerite and the distance from the posterior end of the deuteromerite to the axis of its maximum width. The observed morphological differences can be explained by different degrees of host infection. It is important to compare the obtained information on intraspecific variability of S. oblongatus with similar data from natural ecosystems, as well as from agrocenoses and urban populations of O. sabulosum.
References
Bondarev, D., Fedushko, M., Hubanova, N., Novitskiy, R., Kunakh, O. & Zhukov, O. 2022. Temporal dynamics of the fish communities in the reservoir: the infuence of eutrophication on ecological guilds structure. Ichthyological Research, 70, 21-39.
https://doi.org/10.1007/s10228-021-00854-x
Brygadyrenko, V. & Nazimov, S. 2015. Trophic relations of Opatrum sabulosum (Coleoptera, Tenebrionidae) with leaves of cultivated and uncultivated species of herbaceous plants under laboratory conditions. ZooKeys, 481, 57-68.
https://doi.org/10.3897/zookeys.481.7015
Budakova, V. S., Yorkina, N. V., Telyuk, P. M., Umerova, A. K., Kunakh, O. M. & Zhukov, O. V. 2021. Impact of recreational transformation of soil physical properties on micromolluscs in an urban park. Biosystems Diversity, 29, 78-87.
https://doi.org/10.15421/012111
Canales-Lazcano, J., Contreras-Gardŭno, J. & Córdoba-Aguilar, A. 2005. Fitness-related attributes and gregarine burden in a nonterritorial damselfly Enallagma praevarum Hagen (Zygoptera: Coenagrionidae). Odonatologica, 34, 123-130.
Carpaneto, G. M. & Fattorini, S. 2001. Spatial and seasonal organisation of a darkling beetle (Coleoptera, Tenebrionidae) community inhabiting a Mediterranean coastal dune system. Italian Journal of Zoology, 68, 207-214.
https://doi.org/10.1080/11250000109356410
Cepeda-Pizarro, J., Pizarro-Araya, J. & Väsquez, H. 2005. Variation in the abundance of Arthropoda from a latitudinal transect in the transitional coastal desert of Chile, with emphasis on the epigean tenebrionids. Revista chilena de historia natural, 78, 651-663.
https://doi.org/10.4067/S0716-078X2005000400005
Chernej, L. S. 2005. Darkling beetles (Coleoptera, Tenebrionidae). Naukova dumka, Kyiv, 1-433 [In Russian].
Clopton, R. E. 1999. Revision of the genus Xiphocephalus and description of Xiphocephalus ellisi n. sp. (Apicomplexa: Eugregarinida: Stylocephalidae) from Eleodes opacus (Coleoptera: Tenebrionidae) in the western Nebraska Sandhills. The Journal of Parasitology, 85, 84-89.
https://doi.org/10.2307/3285705
Clopton, R. E. 2000. Stylocephalus occidentalis n. sp. (Apicomplexa: Eugregarinida: Stylocephalidae) from Trimytis pruinosa (Coleoptera: Tenebrionidae) in the Nebraska Sandhills. The Journal of Parasitology, 86, 560-565.
https://doi.org/10.2307/3284872
Clopton, R. E. 2006. Two new species of Xiphocephalus in Eleodes tricostata and Eleodes fusiformis (Coleoptera: Tenebrionidae: Eleodini) from the sandhills of western Nebraska. Journal of Parasitology, 92, 569-577.
https://doi.org/10.1645/GE-742R.1
Clopton, R. E. 2012. Synoptic revision of Blabericola (Apicomplexa: Eugregarinida: Blabericolidae) parasitizing blaberid cockroaches (Dictyoptera: Blaberidae), with comments on delineating gregarine species boundaries. Journal of Parasitology, 98, 572-583.
https://doi.org/10.1645/GE-3000.1
Corbel, J. C. 1971. Les Stylocephalidae (Sporozoa, Gregarinida). Le Naturaliste Canadien, 98, 1-39.
Desportes, I., & Schrével, J. 2013. The Gregarines. The early branching Apicomplexa. In: Treatise on Zoology-Anatomy, Taxonomy, Biology. Brill, Leiden, Boston. (Issue December). Brill.
https://doi.org/10.1163/9789004256057
Fattorini, S. 2011. Insect extinction by urbanization: A long term study in Rome. Biological Conservation, 144, 370-375.
https://doi.org/10.1016/j.biocon.2010.09.014
Filipponi, A. 1952. Stylocephalus (Gregarinida) parasites of Tenebrionidae (Blaps); method of study. Rendiconti-Istituto Superiore Di Sanita, 15 (2), 94-100.
Geus, A. 1969. Sporentierchen Sporoza, die Gregarinida. Die Tierwelt Deutschlands, Jena, 1-608.
Grozea, I., Costea, M. A., Horgos, H., Carabet, A., Virteiu, A. M., Molnar, L., Damianov, S., Grozea, A. & Ramona, S. 2021. Interspecific connections between invertebrates present in maize grown in monoculture. Research Journal of Agricultural Science, 51, 61-68.
Harry, O. G. 1970. Their effect on the growth of the desert locust (Schizogregaria). Nature, 225, 964-966.
https://doi.org/10.1038/225964a0
Hussain, K. J., Krishnan, S. M., Johny, S. & Whitman, D. W. 2013. Phenotypic plasticity in a gregarine parasite (Apicomplexa: Eugregarinordia) infecting grasshoppers. Comparative Parasitology, 80, 233-239.
https://doi.org/10.1654/4602.1
Kabanov, V. 1977. Biology of Opatrum sabulosum L. in the forest-steppe and steppe zones of the European part of the USSR. Scientific Reports of High School. Biological Sciences, 9, 47-53 [In Russian].
Kabanov, V. A. & Sedin, I. F. 1981. Biology of darkling beetles in the European part of the USSR. Invertebrate Fauna and Ecology of the Forest-Steppe Zone. Scientific Papers of the Kursk Pedagogical Institute, 210, 86-93 [In Russian].
Knor, I. B. 1975. Life cycles of darkling beetles (Coleoptera, Tenebrionidae) of Tuva. Soviet Journal Ecology, 6, 458-461 [In Russian].
Koshelev, O., Koshelev, V., Fedushko, M. & Zhukov, O. 2021. Annual course of temperature and precipitation as proximal predictors of birds' responses to climatic changes on the species and community level. Folia Oecologica, 48, 118-135.
https://doi.org/10.2478/foecol-2021-0013
Kunah, O. M., Zelenko, Y. V., Fedushko, M. P., Babchenko, A. V., Sirovatko, V. O. & Zhukov, O. V. 2019. The temporal dynamics of readily available soil moisture for plants in the technosols of the Nikopol Manganese Ore Basin. Biosystems Diversity, 27, 156-162.
https://doi.org/10.15421/011921
Locklin, J. L. & Vodopich, D. S. 2010. Patterns of gregarine parasitism in dragonflies: Host, habitat, and seasonality. Parasitology Research, 107, 75-87.
https://doi.org/10.1007/s00436-010-1836-8
Mirzoeva, A. & Zhukov, O. 2021. Conchological variability of Anadara kagoshimensis (Bivalvia: Arcidae) in the northern part of the Black-Azov Sea basin. Biologia, 76, 3671-3684.
https://doi.org/10.1007/s11756-021-00844-4
Nazimov, S., Loza, I., Kul'bachko, Y., Didur, O., Pakhomov, O., Kryuchkova, A., Shulman, M. & Zamesova, T. 2019. Ecoservice role of earthworm (Lumbricidae) casts in grow of soil buffering capacity of remediated lands within Steppe Zone, Ukraine. In: Behnassi, M., Pollmann, O. & Gupta, H., eds. Climate Change, Food Security and Natural Resource Management. Springer International Publishing, Cham, 247-262.
https://doi.org/10.1007/978-3-319-97091-2_13
Parmenter, R. & Macmahon, J. 1984. Factors influencing the distribution and abundance of ground-dwelling beetles (Coleoptera) in a shrub-steppe ecosystem: The role of shrub architecture. Pedobiology, 26, 21-34.
https://doi.org/10.1016/S0031-4056(23)05817-1
Rejnhardt, A. 1936. Darkling beetles of the Opatrini tribe of the Palearctic region. Izdatel'stvo AN SSSR, Moscow, 1-237 [In Russian].
Rogers, L. E., Woodley, N. E., Sheldon, J. K. & Beedlow, P. A. 1988. Diets of darkling beetles (Coleoptera: Tenebrionidae) within a shrub-steppe ecosystem. Annals of the Entomological Society of America, 81, 782-791.
https://doi.org/10.1093/aesa/81.5.782
Rueckert, S., Villette, P. M. & Leander, B. S. 2011. Species boundaries in gregarine apicomplexan parasites: A case study - comparison of morphometric and molecular variability in Lecudina cf. tuzetae (Eugregarinorida, Lecudinidae). Journal of Eukaryotic Microbiology, 58, 275-283.
https://doi.org/10.1111/j.1550-7408.2011.00553.x
Sienkiewicz, P. & Lipa, J. 2009. Prevalence of eugregarines (Apicomplexa: Eugregarinida) parasitizing in ground beetles (Coleoptera, Carabidae) in various habitats. Polish Journal of Entomology, 46, 43-50.
https://doi.org/10.2478/v10120-009-0013-1
Tanyeri, R., Üzüm, A., Tezcan, S., Keskin, B. & Gülperçin, N. 2010. Notes on pitfall trap collected Tenebrionidae (Coleoptera) species in organic vineyard and orchards of Kemalpaşa (Izmir) province of western Turkey. Munis Entomology & Zoology, 5, 917-919.
Whicker, A. D. & Tracy, C. R. 1987. Tenebrionid beetles in the shortgrass prairie: Daily and seasonal patterns of activity and temperature. Ecological Entomology, 12, 97-108.
https://doi.org/10.1111/j.1365-2311.1987.tb00988.x
Wolz, M., Rueckert, S. & Müller, C. 2022. Fluctuating starvation conditions modify host-symbiont relationship between a leaf beetle and its newly identified gregarine species. Frontiers in Ecology and Evolution, 10, 1-14.
https://doi.org/10.3389/fevo.2022.850161
Yorkina, N., Maslikova, K., Kunah, O. & Zhukov, O. 2018. Analysis of the spatial organization of Vallonia pulchella (Muller, 1774) ecological niche in Technosols (Nikopol manganese ore basin, Ukraine). Ecologica Montenegrina, 17, 29-45.
https://doi.org/10.37828/em.2018.17.5
Yorkina, N. V., Podorozhniy, S. M., Velcheva, L. G., Honcharenko, Y. V. & Zhukov, O. V. 2020. Applying plant disturbance indicators to reveal the hemeroby of soil macrofauna species. Biosystems Diversity, 28, 181-194.
https://doi.org/10.15421/012024
Zhukov, A. & Gadorozhnaya, G. 2016. Spatial Heterogeneity of Mechanical Impedance of Atypical Chernozem: The Ecological Approach. Ekol'ogia (Bratislava), 35, 263-278.
https://doi.org/10.1515/eko-2016-0021
Zhukov, O. V., Kovalenko, D. V., Kramarenko, S. S. & Kramarenko, A. S. 2019. Analysis of the spatial distribution of the ecological niche of the land snail Brephulopsis cylindrica (Stylommatophora, Enidae) in technosols. Biosystems Diversity, 27, 62-68.
https://doi.org/10.15421/011910
Zhukov, O., Kunah, O., Fedushko, M., Babchenko, A. & Umerova, A. 2021. Temporal aspect of the terrestrial invertebrate response to moisture dynamic in technoso[i]ls formed after reclamation at a post-mining site in ukrainian steppe drylands. Ekológia (Bratislava), 40, 178-188.
https://doi.org/10.2478/eko-2021-0020
Zuk, M. 1987 a. The effects of gregarine parasites, body size, and time of day on spermatophore production and sexual selection in field crickets. Behavioral Ecology and Sociobiology, 21, 65-72.
https://doi.org/10.1007/BF00324437
Zuk, M. 1987 b. The effects of gregarine parasites on longevity, weight loss, fecundity and developmental time in the field crickets Gryllus veletis and G. pennsylvanicus. Ecological Entomology, 12, 349-354.
https://doi.org/10.1111/j.1365-2311.1987.tb01014.x
Zymaroieva, A., Zhukov, O., Fedoniuk, T., Pinkina, T. & Hurelia, V. 2021. The relationship between landscape diversity and crops productivity: landscape scale study. Journal of Landscape Ecology, 14, 39-58.