Morphometric Analysis and Interrelationship of Seven Indonesian Hornbill Species (Aves, Bucerotidae) Utilizing Principal Component and Cluster Analyses

  • J. Jarulis Department of Biology, Faculty of Mathematic and Natural Sciences, University of Bengkulu https://orcid.org/0000-0001-6270-604X
  • D. D. Solihin Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia.
  • A. Mardiastuti Department of Forest Resources Conservation and Ecotourism, Faculty of Forestry, IPB University, Bogor, Indonesia https://orcid.org/0000-0002-6734-1200
  • L. B. Prasetyo Department of Forest Resources Conservation and Ecotourism, Faculty of Forestry, IPB University, Bogor, Indonesia
  • W. Novarino Department of Biology, Faculty of Mathematics and Natural Sciences, University of Andalas, Padang, Indonesia https://orcid.org/0000-0003-4189-7750
Keywords: classification, hornbills, morphometric, principal component analysis, similarity

Abstract

In this comprehensive study, we examined 15 distinct morphometric characteristics within seven Indonesian hornbill species. Precise measurements of these morphometric traits were obtained using 0.1 mm calipers and a 1000 mm measuring tape. Our analysis encompassed a total of 85 individuals representing seven hornbill species: Anthracoceros albirostris (18 individuals), A. malayanus (4 individuals), Aceros cassidix (3 individuals), Rhyticeros plicatus (7 individuals), R. undulatus (36 individuals), Buceros bicornis (1 individual), and B. rhinoceros (16 individuals). To elucidate the morphometric ratio data, we employed a robust analytical approach involving the Principal Component Analysis (PCA), Discriminant Analysis, and Cluster Analysis. Our findings underscored a clear separation between hornbill genera, primarily attributed to a combination of PC1 (pertaining to body length) and PC3 (associated with beak morphology). Key morphometric traits that delineated these genera on PC1 included tail length, beak length, horn length, total length, and wing length. Meanwhile, on PC3 (characterizing beak morphology), the distinguishing features encompassed beak width, horn width, and tarsus length. Additionally, our analysis unveiled the characteristics that distinguish species within the genera Anthracoceros and Rhyticeros to be a composite of tail length and head length. This discerning morphometric data facilitated the clustering of seven hornbill species into two distinct groups: Group I comprised A. albirostris and A. malayanus, while Group II included R. plicatus, R. undulatus, A. cassidix, B. rhinoceros, and B. bicornis. Notably, these groups exhibited a 31.93% degree of similarity. This dataset holds immense potential for facilitating genetic classification and comparative studies of Indonesian hornbills.

References

Balasubramanian, P., Aruna, R., Anbarasu, C. & Kumar, E. S. 2011. Avian frugivory and seed dispersal of Indian Sandalwood Santalum album in Tamil Nadu, India. Journal of Threatened Taxa, 3 (5),1775-1777.

Doherty, D. & McCarthy, T. K. 2004. Morphometric and meristic characteristics analyses of two western irish populations of arctic char, Salvelinus alpinus (L). Biology and Environment: Proceedings of The Royal Irish Academy, 104 b,75-85.

Eaton, J. A, van Balen, V., Brickle, N. W. & Rheindt, F. E. 2016. Birds of the Indonesian archipelago: Greater Sundas and Wallacea. Lynx Edicions. Barcelona, 1-536.

Frith, C. B. & Frith, D. W. 1983. A systematic review of the hornbill genus Anthracoceros (Aves, Bucerotidae). Zoological Journal of the Linnean Society, 78, 29-71.

Kemp, A. C. 1988. The systematics and zoogeography of Oriental and Australasian hornbills (Aves: Bucerotidae). Bonner zoologische Beiträge, 39, 315-345.

Kinnaird, M. F. 1998. Evidence for effective seed dispersal by the Sulawesi Red-Knobbed Hornbill Aceros cassidix. Biotropica, 30, 50-55.

Kitamura, S., Yumoto, T., Noma, N., Chuailua, P., Maruhashi, T., Wohandee, P. & Poonswad, P. 2008. Aggregated seed dispersal by wreathed hornbills at a roost site in a moist evergreen forest of Thailand. Ecological Research, 23, 943-952.

Laman, C. H. M., Amiruddin, H., Lawrence, F. E., Maarof, M. M. & Haris, N. D. 2017. Morphological study of Borneon Hornbills based on museum specimens taken form Kalimantan Borneo Indonesia. Paper on 7th International Hornbill Conference 2017. Sarawak-Malaysia.

Lua, H. K. & Nakkuntod, S. 1998. Hornbills in the Singapore zoological reference collection in Poonswad P. 1998. The Asian Hornbills: Ecology and Conservation. Thai studies in biodiversity, 2, 49-68.

MacKinnon, J., Phillipps, K. & Balen, B. 2010. Burung-burung di Sumatera, Jawa, Bali dan Kalimantan (termasuk Sabah, Sarawak dan Brunei Darussalam). Puslitbang Biologi LIPI. Bogor, Indonesia, 1-176.

Novarino, W., Kobayashi, H., Salsabila, A, Jarulis & Janra, M. N. 2008. Panduan Lapangan Pencincinan Burung Di Sumatera. Perpustakaan Nasional. Bogor, 1-154.

Pettingil, J. R. 1984. Ornithology in Laboratory and Field. Fifth edition. Academic Press. Orlando, 1-403.

Poonswad, P., Kemp, A. & Strange, M. 2013. Hornbills of the world. Draco publishing and distribution. Thailand, 1-212.

Ricklefs, R. E. & Ravis, J. 1980. A morphological approach to the study of avian community organization. The Auk 97: 321-338.

Smith, P., Onley, D., Smith, E. N. & Atkinson, K. 2012. Morphometrics of Cerrado birds from the reserva natural laguna blanca (NE Paraguay). The Ring, 34, 51-67.

Sukmantoro, W., Irham, M., Novarino, W., Hasudungan, F., Kemp, N. & Muchtar M. 2007. Daftar Burung Indonesia no. 2. IdOU. Bogor.

Published
2024-04-08
How to Cite
Jarulis, J., Solihin, D. D., Mardiastuti, A., Prasetyo, L. B., & Novarino, W. (2024). Morphometric Analysis and Interrelationship of Seven Indonesian Hornbill Species (Aves, Bucerotidae) Utilizing Principal Component and Cluster Analyses. Zoodiversity, 58(3). https://doi.org/10.15407/zoo2024.03.257
Section
Ornithology