Comparison of Flight Periods of Solitary and Primitively Eusocial Bees in Urban Environments and Nature Conservation Areas: a Preliminary Report
Abstract
Solitary and primitively eusocial bees, an important group of pollinators, have declined in the past few decades. In view of the recent focus on safeguarding pollinating insects, it is vital to understand the basic ecology of species for their conservation, for example their phenologies. We observed the flight periods of solitary and primitively eusocial bees in both the urban core of a large British town and nearby nature conservation areas. The bee surveys were conducted with standardised methods, on warm sunny days from the first appearance of bees in March 2012 and continued until October 2012. This study confirmed that a high number of species are active in the spring season. The emergence dates of species in urban areas and nature sites varied; about 26 of the 35 species were recorded at least one week earlier in urban areas; in contrast, only four species were seen earlier in nature conservation sites. When comparing this with the expected flight periods recorded (largely in nature sites) in the literature, many species were recorded at their expected time. However, a few individuals were recorded after their usual flight activity time, suggesting that the populations were possibly affected by the microclimate in urban areas. More urban phenological data are needed to understand the phenological trends in bees in urban habitats.
References
Altermatt, F. 2010. Climatic warming increases voltinism in european butterflies and moths. Proceedings of the Royal Society B: Biological Sciences, 277, 1281-1287.
https://doi.org/10.1098/rspb.2009.1910
Baldock, K. C. R., M. A. Goddard, D. M. Hicks, W. E. Kunin, N. Mitschunas, L. M. Osgathorpe, S. G. Potts, K. M. Robertson, A. V. Scott, G. N. Stone, I. P. Vaughan & Memmott, J. 2015. Where is the UK's pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proceedings of the Royal Society B: Biological Sciences, 282 (20142849), 1-10.
https://doi.org/10.1098/rspb.2014.2849
Bosch, J. & Kemp, W. P. 2003. Effect of wintering duration and temperature on survival and emergence time in males of the orchard pollinator Osmia lignaria (Hymenoptera: Megachilidae). Environmental Entomology, 32, 711-716.
https://doi.org/10.1603/0046-225X-32.4.711
BWARS, 2013. Bees Wasps & Ants Recording Society. URL: https://bwars.com/ [Accessed on 12 June 2013].
Byers, D. L. 2017. Studying Plant-Pollinator Interactions in a Changing Climate: A Review of Approaches. Applications in Plant Sciences, 5 (6), 1700012.
https://doi.org/10.3732/apps.1700012
Cane, J. H., R. L. Minckley & Kervin, L. J. 2000. Sampling bees (Hymenoptera: Apiformes) for pollinator community studies: Pitfalls of pan-trapping. Journal of the Kansas Entomological Society, 73, 225-231. http://www.jstor.org/stable/25085973.
Edwards, R. (Ed.), 1997. Provisional atlas of the aculeate Hymenoptera of Britain and Ireland, Part 1. Biological Record Centre, Huntingdon, 1-144.
Edwards, R. (Ed.), 1998. Provisional atlas of the aculeate Hymenoptera of Britain and Ireland, Part 2. Biological Record Centre, Huntingdon, 1-139.
Edwards, R. & Broad, G. R. (Eds.), 2005. Provisional atlas of the aculeate Hymenoptera of Britain and Ireland, Part 5. Biological Record Centre, Huntingdon, 1-148.
Edwards, R. & Broad, G. R. (Eds.), 2006. Provisional atlas of the aculeate Hymenoptera of Britain and Ireland, Part 6. Natural Environmental Research Council, Huntingdon, 1-148.
Edwards, R. & Roy, H. (Eds.), 2009. Provisional atlas of the aculeate Hymenoptera of Britain and Ireland, Part 7. Biological Record Centre, Huntingdon, 1-148.
Edwards, R. & Telefer, M. G. (Eds.), 2001. Provisional atlas of the aculeate Hymenoptera of Britain and Ireland, Part 3. Biological Record Centre, Huntingdon, 1-145.
Edwards, R. & Telefer, M. G. (Eds.), 2002. Provisional atlas of the aculeate Hymenoptera of Britain and Ireland, Part 4. Biological Record Centre, Huntingdon, 1-139.
Eickwort, G. C., Eickwort, J. M., Gordon, J. & Eickwort, M. A. 1996. Solitary behavior in a high-altitude population of the social sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Behavioral Ecology and Sociobiology, 38, 227-233.
https://doi.org/10.1007/s002650050236
Falk, S. & Lewington, R. 2015. Field guide to the Bees of Great Britain and Ireland. Bloomsbury, London, 1-432
Gillespie, M. A. K., Baggesen, N. & Cooper, E. J. 2016. High Arctic flowering phenology and plant-pollinator interactions in response to delayed snow melt and simulated warming. Environmental Research Letters, 11: 115006.
https://doi.org/10.1088/1748-9326/11/11/115006
Hall, D. M., Camilo, G. R., Tonietto, R. K., Ollerton, J., Ahrné, K., Arduser,M., Ascher, J. S., Baldock, K.C., Fowler, R., Frankie, G., Goulson, D., Gunnarsson, B., Hanley, M. E., Jackson, J.I., Langellotto, G., Lowenstein, D., Minor, E. S., Philpott, S. M., Potts, S. G., Sirohi, M. H., Spevak, E. M., Stone, G. N., & Threlfall, C. G. 2017. The city as a refuge for insect pollinators. Conservation Biology, 31, 24-29.
https://doi.org/10.1111/cobi.12840
Kim, J. 1999. Influence of resource level on maternal investment in a leaf-cutter bee (Hymenoptera: Megachilidae). Behavioral Ecology, 10, 552-556.
https://doi.org/10.1093/beheco/10.5.552
Klostermeyer, E. C., Mech, S. J. & Rassmussen,mW. M. 1973. Sex and weight of Megachile rotundata progeny associated with provision weights. Journal of the Kansas Entomological Society, 46, 536-548. https://www.jstor.org/stable/25082604
Kreamer, M. E. & Favi, F. D. 2010. Emergence phenology of Osmia lignaria subsp. lignaria (Hymenoptera: Megachilidae), its parasitoid Chrysura kyrae (Hymenoptera: Chrysididae), and bloom of Cercis canadensis. Environmental Entomology, 39, 351-358.
https://doi.org/10.1603/EN09242
Kudo, G. 2020. Dynamics of flowering phenology of alpine plant communities in response to temperature and snowmelt time: Analysis of a nine-year phenological record collected by citizen volunteers. Environmental and Experimental Botany, 170, 103848.
https://doi.org/10.1016/j.envexpbot.2019.103843
Langellotto, G. A., Melathopoulos, A., Messer, I., Anderson, A., McClintock, N. & Costner, L. 2018. Garden pollinators and the potential for ecosystem service flow to urban and peri-urban agriculture. Sustainability, 10, 2047.
https://doi.org/10.3390/su10062047
Lehmann, P., Ammunét, T., Barton, M., Battisti, A., Eigenbrode, D., Jepsen, J., Kalinkat, G., Neuvonen, S., Økland, B., Terblanche, J. S. & Björkman, C. 2020. Complex responses of global insect pests to climate change. Frontiers in Ecology and the Environment, 18, 141-150.
https://doi.org/10.1002/fee.2160
Lowenstein, D. M., Matteson, K. C., Xiao, I., Silva, A. M. & Minor, E. S. 2014. Humans, bees, and pollination services in the city: the case of Chicago, IL (USA). Biodiversity and Conservation, 23, 2857-2874.
https://doi.org/10.1007/s10531-014-0752-0
Met office (2015) Northampton climate. Met office. URL: http://www.metoffice.gov.uk/public/weather/climate/gcr35qpbd [Accessed 12th Dec 2015].
Mohajerani, A., Bakaric, J. & Jeffrey-Bailey, T. 2017. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, 197, 522-538.
https://doi.org/10.1016/j.jenvman.2017.03.095
Morton, E. M. & Rafferty, N. E. 2017. Plant-Pollinator Interactions Under Climate Change: The Use of Spatial and Temporal Transplants. Applications in Plant Sciences, 5, 1600133.
https://doi.org/10.3732/apps.1600133
Nature spot, 2013. Nature Spot, recording the Wildlife of Leicestershire and Rutland. URL: https://www.naturespot.org.uk/ [Accessed on 20 June 2013]
New, T. R. 2018. Promoting and developing insect conservation in Australia's urban environments. Austral Entomology, 57, 182-193.
https://doi.org/10.1111/aen.12332
Ollerton, J. 2017. Pollinator Diversity: Distribution, Ecological Function, and Conservation. Annual Review of Ecology, Evolution, and Systematics, 48, 353-376.
https://doi.org/10.1146/annurev-ecolsys-110316-022919
Ollerton, J. 2021. Pollinators & Pollination: Nature and Society, Pelagic Publishing, Exeter, 1-286.
https://doi.org/10.53061/JAOK9895
Ollerton, J. & Diaz, A. 1999. Evidence for stabilising selection acting on flowering time in Arum maculatum (Araceae): The influence of phylogeny on adaptation. Oecologia, 119, 340-348.
https://doi.org/10.1007/s004420050794
Ollerton, J. & Lack, A. 1998. Relationships between flowering phenology, plant size and reproductive success in Lotus corniculatus (Fabaceae). Plant Ecology, 139, 35-47.
https://doi.org/10.1023/A:1009798320049
Ollerton, J., Winfree, R. & Tarrant, S. 2011. How many flowering plants are pollinated by animals? Oikos, 120, 321-326.
https://doi.org/10.1111/j.1600-0706.2010.18644.x
Peterson, J. H., Roitberg, B. D. & Peterson, J. H. 2006. Impacts of flight distance on sex ratio and resource allocation to offspring in the leafcutter bee, Megachile rotundata. Behavioral Ecology and Sociobiology, 59, 589-596.
https://doi.org/10.1007/s00265-005-0085-9
Petrauski, L., Owen, S. F, Constantz G. D. & Anderson, J. T. 2019. Changes in flowering phenology of Cardamine concatenata and Erythronium americanum over 111 years in the Central Appalachians. Plant Ecology, 220, 817-828.
https://doi.org/10.1007/s11258-019-00956-7
Richards, M. H. 2000. Evidence for geographic variation in colony social organization in an obligately social sweat bee, Lasioglossum malachurum Kirby (Hymenoptera; Halictidae). Canadian Journal of Zoology, 78, 1259-1266.
https://doi.org/10.1139/z00-064
Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., Menzel, A., Root, T. L. Estrella, N., Seguin, B., Tryjanowski, P., Liu, C., Rawlins, S. & Imeson, A. 2008. Attributing physical and biological impacts to anthropogenic climate change. Nature, 453, 353-357.
https://doi.org/10.1038/nature06937
Roy, D. B. & Sparks, T. H. 2000. Phenology of British butterflies and climate change. Global Change Biology, 6, 407-416.
https://doi.org/10.1046/j.1365-2486.2000.00322.x
Santamouris, M. 2006. Environmental Design of Urban Buildings: An Integrated Approach. Taylor & Francis, Abington, 1-348.
Scoble, M. J. 1995. The Lepidoptera: form, function and diversity. Oxford University Press, Oxford, 1-404.
Shrestha, M., Garcia, J. E., Bukovac, Z., Dorin, A. & Dyer, A. A. 2018. Pollination in a new climate: Assessing the potential influence of flower temperature variation on insect pollinator behaviour. PLoS ONE, 13, e0200549.
https://doi.org/10.1371/journal.pone.0200549
Sirohi, M. H., Jackson, J., Edwards, M. & Ollerton, J. 2015. Diversity and abundance of solitary and primitively eusocial bees in an urban centre : a case study from Northampton (England). Journal of Insect Conservation, 19, 487-500.
https://doi.org/10.1007/s10841-015-9769-2
Sirohi, M.H., Jackson, J. & Ollerton, J. 2022. Plant-bee interactions and resource utilisation in an urban landscape. Urban Ecosystems 25: 1913-1924.
https://doi.org/10.1007/s11252-022-01290-z
Soucy, S. L. 2002. Nesting biology and socially polymorphic sweat bee Halictus rubicundus (hymenoptera: Halictidae). Annals of the Entomological Society of America, 95, 57-65.
https://doi.org/10.1603/0013-8746(2002)095[0057:NBASPB]2.0.CO;2
Spellman, G. 2012. The Climate. In: Gent, G. and Wilson, R., eds. The Flora of Northamptonshire and the Soke of Peterborough. Northans, Northamptonshire Flora Group, 1-594.
Stephen, W. P. & Osgood, C, E. 1965. Influence of the tunnel size and nesting material on the sex ratios in a leaf-cutter bee, Megachile rotundata. Journal of Economic Entomology, 58, 965-968.
https://doi.org/10.1093/jee/58.5.965
Suonan, J., Classen, A. T., Sanders, N. J. & He, J. S. 2019. Plant phenological sensitivity to climate change on the Tibetan Plateau and relative to other areas of the world. Ecosphere, 10, e02543.
https://doi.org/10.1002/ecs2.2543
The Essex Field Club, 2013. The Essex Field Club, the leading society for wildlife and geology enthusiasts in Essex, England, UK. URL: https://www.essexfieldclub.org.uk/portal.php [Accessed on 25 June 2013]
Theodorou, P., Radzevičiūtė, R., Lentendu, G., Kahnt, B., Husemann, M., Bleidorn, C., Settele, J., Schweiger, O., Grosse, I., Wubet, T., Murray, T. E. & Paxton, R. T. 2020. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nature Communications, 11, 576.
https://doi.org/10.1038/s41467-020-14496-6
Threlfall, C. G., Walker, K., Williams, N. S., Hahs, A. K., Mata, L., Stork, N. & Livesley, S. J. 2015. The conservation value of urban green space habitats for Australian native bee communities. Biological Conservation, 187, 240-248.
https://doi.org/10.1016/j.biocon.2015.05.003
Tong, Z.Y., Wu, L.Y., Feng, H.H., Zhang, M., Armbruster, W.S., Renner, S.S. & Huang, S.Q. 2023. New calculations indicate that 90% of flowering plant species are animal-pollinated. National Science Review, 10 (10), nwad219.
https://doi.org/10.1093/nsr/nwad219
Välimäki, P., Kivelä, S. M., Jääskeläinen, L., Kaitala, A., Kaitala, V. & Oksanen, J. 2008. Divergent timing of egg-laying may maintain life history polymorphism in potentially multivoltine insects in seasonal environments. Journal of Evolutionary Biology, 21, 1711-1723.
https://doi.org/10.1111/j.1420-9101.2008.01597.x
Wirtz, P., Kopka, S. & Schmoll, G. 1992. Phenology of two territorial solitary bees, Anthidium manicatum and A. florentinum (Hymenoptera: Megachilidae). Journal of Zoology, 228, 641-651.
https://doi.org/10.1111/j.1469-7998.1992.tb04461.x
Wolf, A. A., Zavaleta, E. S. & Selmants, P.C. 2017. Flowering phenology shifts in response to biodiversity loss. Proceedings of the National Academy of Sciences of the United States of America, 114, 3463-3468.
https://doi.org/10.1073/pnas.1608357114
Wyman, L. M. & Richards, M. H. 2003. Colony social organization of Lasioglossum malachurum Kirby (Hymenoptera, Halictidae) in southern Greece. Insectes Sociaux, 50, 201-211.
https://doi.org/10.1007/s00040-003-0647-7
Yu, Q., Jia, D. R., Tian, B., Yang, Y. P. & Duan, Y. W. 2016. Changes of flowering phenology and flower size in rosaceous plants from a biodiversity hotspot in the past century. Scientific Reports, 6, 28302.