Relationships of Otolith Dimensions and Weight with Body Length of Three Lethrinid Species (Actinopterygii, Lethrinidae) from Yemen
Abstract
Relationships between fish length and otolith length, width, and weight were studied in three lethrinid species Lethrinus borbonicus Valenciennes 1830, Lethrinus lentjan (Lacepède 1802), and Lethrinus mahsena (Fabricius, 1775) collected from the south of the Red Sea at the costs of the Republic of Yemen. These relationships are important for future research into the biology of these species, including their diet, feeding habits, age, and growth. Linear regression models were used to investigate the relationships between otolith length and total fish length (TL), otolith weight and TL, and otolith width and TL. A non-linear regression model was used to investigate the relationship between otolith weight and TL. The morphometric relationships indicated that otolith length exhibited the highest correlation with total fish length among the other two otolith variables. This study is the first to examine the relationship between fish size and otolith size and weight in three lethrinid species obtained from the coast of the Red Sea in Yemen.
References
Acıpınar, H., Gürsoy, Ç., Gaygusuz, Ö. & Tarkan, A.S. 2004. The Use and Suitability of Some Bone Measures and Otoliths for Size-Estimation of Fish In Predator Prey Studies. Behaviour and Ecology of Freshwater Fish: Linking Ecology and Individual Behaviour International Conference 22-24 August 2004. Freshwater Centre, Silkeborg, Denmark.
Aguilar-Perera, A. & Quijano-Puerto, L. 2016. Relations between fish length to weight, and otolith length and weight, of the lionfish Pterois volitans in the Parque Nacional Arrecife Alacranes, southern Gulf of Mexico. Revista de biología marina y Oceanografía, 51 (2), 469-474.
https://doi.org/10.4067/S0718-19572016000200025
Al-Busaidi, H. K., Jawad, L. A. & Al-Balushi, A. H. 2017. Relationships between fish and otolith size of the blackspot snapper Lutjanus ehrenbergii (Peters, 1869) collected from the coast of Muscat City, Sea of Oman, International Journal of Marine Science, 7 (40), 386-393.
https://doi.org/10.5376/ijms.2017.07.0040
Allsop, D. J. & West, S. A. 2003. Constant relative age and size at sex change for sequentially hermaphroditic fish. Journal of evolutionary biology, 16 (5), 921-929.
https://doi.org/10.1046/j.1420-9101.2003.00590.x
Battaglia, P., Malara, D., Romeo, T. & Andaloro, F. 2010. Relationships between otolith size and fish size in some mesopelagic and bathypelagic species from the Mediterranean Sea (Strait of Messina, Italy). Scientia Marina, 74 (3), 605-612.
https://doi.org/10.3989/scimar.2010.74n3605
Battaglia, P., Malara, D., Ammendolia, G., Romeo, T. & Andaloro, F. 2015. Relationships between otolith size and fish length in some mesopelagic teleosts (Myctophidae, Paralepididae, Phosichthyidae and Stomiidae). Journal of Fish Biology, 87 (3), 774-782.
https://doi.org/10.1111/jfb.12744
Blacker, R. W. 1974. Recent advances in otolith studies, In: Harden Jones, F. R., ed. Sea fisheries research. John Wiley and Sons, N.Y., 67-90
Bouhlel, M. 1988. Poissons de Djibouti. Placerville (California, USA): RDA International, Inc. 1-416.
Campana, S. E. & Casselman, J. M. 1993. Stock discrimination using otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences, 50 (5), 1062-1083.
https://doi.org/10.1139/f93-123
Campana, S. E. 2004. Photographic atlas of fish otoliths of the Northwest Atlantic Ocean. Ottawa (Canada), NRC Research Press.1-284.
https://doi.org/10.1139/9780660191089
Cardinale, M., Doering-Arjes, P., Kastowsky, M. & Mosegaard, H. 2004. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 61 (2),158-167.
https://doi.org/10.1139/f03-151
Carpenter, K.E. & Allen, G. R. 1989. FAO Species Catalogue. Vol. 9. Emperor fishes and large-eye breams of the world (family Lethrinidae). An annotated and illustrated catalogue of lethrinid species known to date. FAO Fish. Synop. 125 (9), 118. Rome: FAO.
Casselman, J. M. 1990. Growth and relative size of calcified structures of fish. Transactions of the American Fisheries Society, 119 (4), 673-688.
https://doi.org/10.1577/1548-8659(1990)119<0673:GARSOC>2.3.CO;2
Echeverria, T. 1987. Relationship of otolith length to total length in rockfishes from northern and central California. Fishery Bulletin, 85 (2), 383-387.
Fickling, N. J. & Lee, R. 1981. Further aids to the reconstruction of digested prey lengths. Aquaculture Research, 12(3),107-110.
https://doi.org/10.1111/j.1365-2109.1981.tb00017.x
Froese, R. & Pauly, D. Editors. 2023. FishBase. World Wide Web electronic publication. www.fishbase.org, version (06/2023).
Gauldie, R. W. 1988. Function, form, and time-keeping properties of fish otoliths. Comparative Biochemistry and Physiology Part A: Physiology, 91 (2), 395-402.
https://doi.org/10.1016/0300-9629(88)90436-7
Giménez, J., Manjabacas, A., Tuset, V. M. & Lombarte, A. 2016. Relationships between otolith and fish size from Mediterranean and north-eastern Atlantic species to be used in predator-prey studies. Journal of Fish Biology, 89 (4), 2195-2202.
https://doi.org/10.1111/jfb.13115
Grandcourt, E. M. 2002. Demographic characteristics of a selection of exploited reef fish from the Seychelles: preliminary study. Marine and Freshwater Research, 53 (2), 123-130.
https://doi.org/10.1071/MF01123
Hájková, P., Roche, K. & Kocian, L. 2003. On the use of diagnostic bones of brown trout, Salmo trutta m. fario, grayling, Thymallus thymallus and Carpathian sculpun, Cottus poecilopus in Eurasian otter, Lutra lutra diet analysis. Folia Zoologica, 52 (4), 389-398.
Hansel, H. C., Duke, S. D., Lofy, P. T. & Gray, G. A. 1988. Use of diagnostic bones to identify and estimate original lengths of ingested prey fishes. Transaction of the American Fisheries Society, 117 (1), 55-62.
https://doi.org/10.1577/1548-8659(1988)117<0055:UODBTI>2.3.CO;2
Holmgren, K. & Wickström, H. 2012. Note on otolith growth in elvers, Anguilla anguilla (L.), and the relative otolith size during somatic growth. Fisheries & Aquatic Life, 4 (2 a), 223-234.
https://doi.org/10.2478/v10086-012-0026-y
Kailola, P. J., Williams, M. J., Stewart, P. C., Reichelt, R. E., McNee, A. & Grieve, C. 1993. Australian fisheries resources. Bureau of Resource Sciences, Canberra, Australia.1-422.
Kumar, M. S., Rajeswari, G. & Kishore, B. 2015. Food and feeding habits of Johnius carutta (Bloch, 1793) off Visakhapatnam, East-coast of India. Fish Technology, 52, 88-94.
Lieske, E. & Myers, R. 1994. Collins Pocket Guide. Coral reef fishes. Indo-Pacific & Caribbean including the Red Sea. Haper Collins Publishers, 1-400.
Longenecker, K. 2008. Relationships between otolith size and body size for Hawaiian reef fishes. Pacific Science, 62 (4), 533-539.
https://doi.org/10.2984/1534-6188(2008)62[533:RBOSAB]2.0.CO;2
Mann, R. H. K. & Beaumont, W. R. C. 1980. The collection, identification, and reconstruction of lengths of fish prey from their remains in pike stomachs. Aquaculture Research, 11 (4), 169-172.
https://doi.org/10.1111/j.1365-2109.1980.tb00402.x
Morales-Nin, B. 2000. Review of the growth regulation processes of otolith daily increment formation. Fisheries research, 46 (1-3), 53-67.
https://doi.org/10.1016/S0165-7836(00)00133-8
Nolf, D. 1995. Studies on fossil otoliths-the state of the art, 513-544. In: Secor, D. H., Dean, J. M., Campana S. E., eds. Recent developments in fish otolith research. University of South Carolina Press, Columbia, SC, 1-730.
Osman, Y. A., Pálsson, S. & Makkey, A. F. 2021. Otolith shape analysis of Lethrinus lentjan (Lacepède, 1802) and L. microdon (Valenciennes, 1830) from the Red Sea. International Journal of Aquatic Biology, 9 (3), 159-166.
Pierce, G. J. & Boyle, P. R. 1991. A review of methods for diet analysis in piscivorous marine mammals. Oceanography and Marine Biology Annual Review, 29, 409-486.
Pierce, G. J., Boyle, P. R., Watt, J. & Grisley, M. 1993. Recent advances in diet analysis of marine mammals. Symposium of the Zoological Society of London, 66, 214-261.
https://doi.org/10.1093/oso/9780198540694.003.0014
Prenda, J. & Granado-Lorencio, C. 1992. Biometric analysis of some cyprinid bones of prey fishes to estimate original lengths and weights. Folia Zoologica, 41 (2), 175-185
Radke, R.J., Petzoldt, T. & Wolter, C. 2000. Suitability of pharyngeal bone measures commonly used for reconstruction of prey fish length. Journal of Fish Biology, 57 (4), 961-967.
https://doi.org/10.1006/jfbi.2000.1359
Reis, I., Ates, C. & Jawad, L. 2023. The relationships between fish length and otolith size and weight of the golden grey mullet Chelon auratus (Risso, 1810) (Mugiliformes, Mugilidae) collected from Koycegiz Lagoon, Aegean Sea, Turkiye. Cahiers de Biologie Marine, 64 (4), 349-356.
Riestra, C. M., Perez Comesaña, J. E., Arias, K. A., Tamini, L. L. & Chiaramonte, G. E. 2020. Back calculation of total length of Argentine seabass Acanthistius patachonicus using morphometric relationships of bones and measurements of the body. Marine and Fisheries Sciences, 33 (1), 69-75.
https://doi.org/10.47193/mafis.3312020061804
Sadighzadeh, Z., Tuset, V. M., Dadpour, M. R., Otero-Ferrer, J. L. & Lombarte, A. 2012. Otolith atlas from the Persian Gulf and Oman Sea fishes. Germany, Lambert Academic Publishing. 1-72.
Schulz-Mirbach, T. & Reichenbacher, B. 2006. Reconstruction of Oligocene and Neogene freshwater fish faunas-an actualistic study on cypriniform otoliths. Acta Palaeontologica Polonica, 51 (2), 283-304.
Škeljo, F. & Ferri, J. 2012. The use of otolith shape and morphometry for identification and size-estimation of five wrasse species in predator-prey studies. Journal of Applied Ichthyology, 28 (4), 524-530.
https://doi.org/10.1111/j.1439-0426.2011.01925.x
Sommer, C., Schneider, W. & Poutiers, J.-M. 1996. FAO species identification field guide for fishery purposes. The living marine resources of Somalia. FAO, Rome. 1-376.
Tarkan, A. N., Bilge, G., Gaygusuz, Ö., Tarkan, A. S., Gürsoy, Ç. & Acipinar, H. 2007. On the Use of Otoliths of a Ponto-Caspian gobiid Proterorhinus marmoratus (Pallas, 1814) from Lake İznik (Turkey) in Prey-Predator Studies. International Journal of Natural & Engineering Sciences, 1 (3), 29-33.
Toor, H .S. 1964. Biology and fishery of the pigface bream, Lethrinus lentjan Lacepède, from Indian waters. III. Age and growth. Indian Journal of Fisheries, 11 (A ) (2), 597-620.
Tuset, V. M., Lozano, I. J., Gonzalez, J. A., Pertusa, J. F. & Garcia-Diaz, M. M. 2003. Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (Linnaeus 1758). Journal of Applied Ichthyology, 19 (2), 88-93.
https://doi.org/10.1046/j.1439-0426.2003.00344.x
Tuset, V. M., Lombarte, A. & Assis, C. A. 2008. Otolith atlas for the western Mediterranean, north, and central eastern Atlantic. Scientia Marina, 72 (S1), 7-198.
https://doi.org/10.3989/scimar.2008.72s17
Waessle, J. A, Lasta, C. A. & Favero, M. 2003. Otolith morphology and body size relationships for juvenile Sciaenidae in the Rio de la Plata estuary (35-36 °S). Scientia Marina, 67 (2), 233-240.
https://doi.org/10.3989/scimar.2003.67n2233
Zar, J. H. 1999. Biostatistical Analysis. New Jersey (USA), Prentice-Hall, 1-663.
Zischke, M. T., Litherland, L., Tilyard, B. R., Stratford, N. J., Jones, E. L. & Wang, Y. G. 2016. Otolith morphology of four mackerel species (Scomberomorus spp.) in Australia: Species differentiation and prediction for fisheries monitoring and assessment. Fisheries Research, 176, 39-47.