Whether the Presence of Di- and Triploid Hybrids, Pelophylax esculentus, Influences Gametogenesis of Their Parental Species, P. ridibundus
Abstract
Meiosis ensures efficient reproduction by the formation of viable gametes with a constant number of chromosomes. However, in natural hybrid complexes, where parental and hybrid lineages coexist, the fidelity of this process may be challenged. To better understand how this process functions in natural populations, we investigated, for the first time, the features of spermatogenesis and assessed the level of abnormal meiotic metaphases in the parental species Pelophylax ridibundus and P. lessonae of the hybridogenetic P. esculentus complex from 11 locations in Ukraine. Using Giemsa and/or Ag staining, we analysed 2,203 meiotic and 471 mitotic metaphases from 41 males. Most of the analysed spermatogonia and spermatocytes had chromosome numbers consistent with those forming viable gametes. The average level of aneuploidy in P. ridibundus males was 17% across all hemiclonal population systems analysed, which is significantly lower than in hybrids (p < 0.05). Furthermore, the lack of a significant difference (p = 0.93) in aneuploidy frequency among P. ridibundus from different population systems compared to the pure R-population suggests that the spermatogenesis of P. ridibundus is not affected by the presence of hybrids or the other parental species (P. lessonae). This cytogenetic robustness may contribute to the long-term stability of mixed populations, where P. ridibundus serves as a consistent source of haploid gametes necessary for the reproduction of P. esculentus hybrids.
References
Abbott, R., Albach, D., Ansell, S., Arntzen, J. W., Baird, S. J. E, Bierne, N., Boughman, J., Brelsford, A., Buerkle, C. A., Buggs, R., Butlin, R. K., Dieckmann, U., Eroukhmanoff, F., Grill, A., Cahan, S. H., Hermansen, J. S., Hewitt, G., Hudson, A. G., Jiggins, C., Jones, J., Keller, B., Marczewski, T., Mallet, J., Martinez-Rodriguez, P., Möst, M., Mullen, S., Nichols, R., Nolte, A. W., Parisod, C., Pfennig, K., Rice, A. M., Ritchie, M. G., Seifert, B., Smadja, C. M., Stelkens, R., Szymura, J. M., Väinölä, R., Wolf, J. B. W. & Zinner, D. 2013. Hybridization and speciation. Journal of Evolutionary Biology 26 (2), 229-246.
https://doi.org/10.1111/j.1420-9101.2012.02599.x
Berger, L. 1977. Systematics and hybridization in the Rana esculenta complex. In: Taylor, D. H. & Guttman, S. I. The Reproductive Biology of Amphibians, Boston, MA: Springer Nature, Springer, Boston, MA, 367-388.
https://doi.org/10.1007/978-1-4757-6781-0_12
Berger, L., Uzzell, T. & Hotz, H. 1988. Sex Determination and Sex Ratios in Western Palearctic Water Frogs: XX and XY Female Hybrids in the Pannonian Basin? Proceedings of the Academy of Natural Sciences of Philadelphia, 140 (1), 220-239.
Biriuk, O. V., Shabanov, D. A., Korshunov, A. V., Borkin, L. J., Lada, G. A., Pasynkova, R. A., Rosanov, J. M. & Litvinchuk, S. N. 2016. Gamete production patterns and mating systems in water frogs of the hybridogenetic Pelophylax esculentus complex in north-eastern Ukraine. Journal of Zoological Systematics and Evolutionary Research, 54 (3), 215-225.
https://doi.org/10.1111/jzs.12132
Birstein, V. J. 1984. Localization of NORs in karyotypes of four Rana species. Genetica, 64 (3), 149-154.
https://doi.org/10.1007/BF00115338
Blankenhorn, H. J. 1977. Reproduction and Mating Behavior in Rana Lessonae - Rana Esculenta Mixed Populations. In: Taylor, D. H. & Guttman, S. I. The Reproductive Biology of Amphibians, Boston, MA: Springer Nature, 389-410.
https://doi.org/10.1007/978-1-4757-6781-0_13
Borkin, L. J., Korshunov, A. V., Lada, G. A., Litvinchuk, S. N., Rosanov, J. M., Shabanov, D. A. & Zinenko, A. I. 2004. Mass Occurrence of Polyploid Green Frogs (Rana esculenta Complex) in Eastern Ukraine. Russian Journal of Herpetology, 11 (3), 203-222.
Bucci, S., Ragghianti, M., Mancino, G., Berger, L., Hotz, H. & Uzzell, T. 1990. Lampbrush and mitotic chromosomes of the hemiclonally reproducing hybrid Rana esculenta and its parental species. The Journal of Experimental Zoology, 255 (1), 37-56.
https://doi.org/10.1002/jez.1402550107
Choleva, L., Dolezalkova-Kastankova, M., Labajova, V., Sember, A., Altmanova, M., Luksikova, K., Chung Voleníková, A., Dalíková, M., Nguyen, P., Pustovalova, E., Fedorova, A. & Dedukh, D. 2023. Formation of hemiclonal reproduction and hybridogenesis in Pelophylax water frogs studied with species-specific cytogenomic probes. bioRxiv, 2023-10.
Christiansen, D. G. & Reyer, H. U. 2009. From clonal to sexual hybrids: genetic recombination via triploids in all-hybrid populations of water frogs. Evolution, 63 (7), 1754-1768.
https://doi.org/10.1111/j.1558-5646.2009.00673.x
Dedukh, D., Mazepa, G., Shabanov, D., Rosanov, J., Litvinchuk, S., Borkin, L., Saifitdinova, A. & Krasikova, A. 2013. Cytological maps of lampbrush chromosomes of European water frogs (Pelophylax esculentus complex) from the Eastern Ukraine. BMC Genomic Data, 14 (1).
https://doi.org/10.1186/1471-2156-14-26
Dedukh, D., Litvinchuk, S., Rosanov, J., Mazepa, G., Saifitdinova, A., Shabanov, D. & Krasikova, A. 2015. Optional Endoreplication and Selective Elimination of Parental Genomes during Oogenesis in Diploid and Triploid Hybrid European Water Frogs. PLoS One, 10 (4), e0123304.
https://doi.org/10.1371/journal.pone.0123304
Dedukh, D., Litvinchuk, S., Rosanov, J., Shabanov, D. & Krasikova, A. 2017. Mutual maintenance of di- and triploid Pelophylax esculentus hybrids in R-E systems: results from artificial crossings experiments. BMC Evolutionary Biology, 17 (1), 220.
https://doi.org/10.1186/s12862-017-1063-3
Dedukh, D., Litvinchuk, J., Svinin, A., Litvinchuk, S., Rosanov, J. & Krasikova, A. 2019. Variation in hybridogenetic hybrid emergence between populations of water frogs from the Pelophylax esculentus complex. PLoS One, 14 (11), e0224759.
https://doi.org/10.1371/journal.pone.0224759
Dedukh, D., Riumin, S., Chmielewska, M., Rozenblut-Kościsty, B., Kolenda, K., Kaźmierczak, M., Dudzik, A., Ogielska, M. & Krasikova, A. 2020. Micronuclei in germ cells of hybrid frogs from Pelophylax esculentus complex contain gradually eliminated chromosomes. Scientific Reports, 10 (1), 8720.
https://doi.org/10.1038/s41598-020-64977-3
Dedukh, D. & Krasikova, A. 2021. Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biological Reviews, 97 (1), 195-216.
https://doi.org/10.1111/brv.12796
Dedukh, D., Maslova., A, Al-Rikabi, A., Padutsch, N., Liehr, T. & Krasikova, A. 2023. Karyotypes of water frogs from the Pelophylax esculentus complex: results of cross-species chromosomal painting. Chromosoma, 132 (4), 329-342.
https://doi.org/10.1007/s00412-023-00812-8
Doležálková, M., Sember, A., Marec, F., Ráb, P., Plötner, J. & Choleva, L. 2016. Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax? BMC Genomic Data, 17 (1), 100.
https://doi.org/10.1186/s12863-016-0408-z
Doležálková-Kaštánková, M., Pruvost, N. B. M., Plötner, J., Reyer, H.-U., Janko, K. & Choleva, L. 2018. All-male hybrids of a tetrapod Pelophylax esculentus share its origin and genetics of maintenance. Biology of Sex Differences, 9 (1), 13.
https://doi.org/10.1186/s13293-018-0172-z
Doležálková-Kaštánková, M., Mazepa, G., Jeffries, D. L., Perrin, N., Plötner, M., Plötner, J., Guex, G.-D., Mikulíček, P., Poustka, A. J., Grau, J. & Choleva, L. 2021. Capture and return of sexual genomes by hybridogenetic frogs provides clonal genome enrichment in a sexual species. Scientific Reports, 11 (1), 1633.
https://doi.org/10.1038/s41598-021-81240-5
Doležálková-Kaštánková, M., Pyszko, P. & Choleva, L. 2022. Early Development Survival of Pelophylax Water Frog Progeny is Primarily Affected by Paternal Genomic Input. Frontiers in Bioscience-Landmark, 27(8), 233.
https://doi.org/10.31083/j.fbl2708233
Doležálková-Kaštánková, M., Dedukh, D., Labajova, V., Pustovalova, E. & Choleva, L. 2024. Inheritance patterns of male asexuality in hybrid males of a water frog Pelophylax esculentus. Scientific Reports, 14 (1), 22221.
https://doi.org/10.1038/s41598-024-73043-1
Dufresnes, C. & Mazepa, G. 2020. Hybridogenesis in Water Frogs. eLS, 1, 718-726.
https://doi.org/10.1002/9780470015902.a0029090
Dufresnes, C., Monod-Broca, B., Bellati, A., Canestrelli, D., Ambu, J., Wielstra, B., Dubey, S., Crochet, P.-A., Denoël, M. & Jablonski, D. 2024. Piecing the barcoding puzzle of Palearctic water frogs (Pelophylax) sheds light on amphibian biogeography and global invasions. Global Change Biology, 30 (3), e17180.
https://doi.org/10.1111/gcb.17180
Fedorova, A., Pustovalova, E., Drohvalenko, M., Biriuk, O., Doležálková-Kaštánková, M., Kravchenko, M., Korshunov, O., Mikulíček, P., Choleva, L., Holovnia, D., Dedukh, D. & Shabanov, D. 2024. Hybridogenetic reproduction of Pelophylax water frogs from different RE hemiclonal population systems from Eastern Ukraine: selective mortality, clonal and ploidy diversity. bioRxiv, 2024-12.
https://doi.org/10.1101/2024.12.03.626604
Graf, J. D. & Polls-Pelaz, M. 1989. Evolutionary genetics of the Rana esculenta complex. In: Dawley R. M. & Bogart J. P. eds. Evolution and ecology of unisexual vertebrates, New York State Museum Bulletin 466, New York State Museum, Albany, NY, 289-302.
Günther, R. 1975. Untersuchungen der Meiose bei Männchen von Rana ridibunda Pall., Rana lessonae Cam. und deren Bastardform "Rana esculenta" L. (Anura). Biologisches Zentralblatt, 94 (3), 277-294 [In German].
Günther, R., Uzzell, T. & Berger, L. 1979. Inheritance patterns in triploid Rana "esculenta" (Amphibia, Salientia). Mitteilungen Des Zoologischen Museums Berlin, 55, 35-57.
https://doi.org/10.1002/mmnz.4830550107
Heppich, S. 1978. Hybridogenesis in Rana esculenta: C-band karyotypes of Rana ridibunda, Rana lessonae and Rana esculenta. Journal of Zoological Systematics and Evolutionary Research, 16 (1), 27-39.
https://doi.org/10.1111/j.1439-0469.1978.tb00918.x
Hermaniuk, A., Czajkowska, M., Borkowska, A. & Taylor, J. R. E. 2020. Body size variation in hybrids among populations of European water frogs (Pelophylax esculentus complex) with different breeding systems. Amphibia-Reptilia, 41 (3), 361-371.
https://doi.org/10.1163/15685381-bja10005
Howell, W. M. & Black, D. A. 1980. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia, 36 (8), 1014-1015.
https://doi.org/10.1007/BF01953855
Kolenda, K., Kaczmarski, M., Żurawska, J. & Ogielska, M. 2024. Decline of Pelophylax lessonae in mixed populations of water frogs over the last 50 years. The European Zoological Journal, 91 (1), 94-104.
https://doi.org/10.1080/24750263.2023.2300284
Loidl, J. 2016. Conservation and Variability of Meiosis Across the Eukaryotes. Annual Review of Genetics, 50 (1), 293-316.
https://doi.org/10.1146/annurev-genet-120215-035100
Macgregor, H.C. & Varley, J.M. 1988. Working with Animal Chromosomes (2nd edition). Wiley, 1-306.
Mallet, J. 2010. Group selection and the development of the biological species concept. Philosophical Transactions of the Royal Society B: Biological Sciences, 365 (1547), 1853-1863.
https://doi.org/10.1098/rstb.2010.0040
Marta, A., Tichopád, T., Bartoš, O., Klíma, J., Ali Shah, M., Šlechtová Bohlen, V., Bohlen, J., Halačka, K., Choleva, L., Stöck, M., Dedukh, D. & Janko, K. 2023. Genetic and karyotype divergence between parents affect clonality and sterility in hybrids. ELife, 12.
https://doi.org/10.7554/eLife.88366.3
Ogielska, M. & Bartmanska, J. 1999. Development of testes and differentiation of germ cells in water frogs of the Rana esculenta - complex (Amphibia, Anura). Amphibia-Reptilia, 20 (3), 251-263.
https://doi.org/10.1163/156853899507059
Plötner, J. 2005. Die westpaläarktischen Wasserfrösche. Bielefeld: Laurenti, 1-60 [In German].
Pustovalova, E., Choleva, L., Shabanov, D. & Dedukh, D. 2022 a. The high diversity of gametogenic pathways in amphispermic water frog hybrids from Eastern Ukraine. PeerJ, 10, e13957.
https://doi.org/10.7717/peerj.13957
Pustovalova, E., Fedorova, A. & Shabanov, D. 2022 b. Methodology for intravital mitotic chromosome preparation from regenerated tissue derived from the tail tips of tadpoles. Journal of Vertebrate Biology, 71 (22010).
https://doi.org/10.25225/jvb.22010
Pustovalova, E., Choleva, L., Shabanov, D. & Dedukh, D. 2024. Genomic introgressions may affect hybridogenetic reproduction in water frog hybrids. Authorea, August 29, 2024.
https://doi.org/10.22541/au.172489658.85596156/v1
Ragghianti, M., Guerrini, F., Bucci, S., Mancino, G., Hotz, H., Uzzell, T. & Guex, G.-D. 1995. Molecular characterization of a centromeric satellite DNA in the hemiclonal hybrid frog Rana esculenta and its parental species. Chromosome Research, 3, 497-506.
https://doi.org/10.1007/BF00713965
Raudsepp, T. & Chowdhary, B. P. 2016. Chromosome Aberrations and Fertility Disorders in Domestic Animals. Annual Review of Animal Biosciences, 4 (1), 15-43.
https://doi.org/10.1146/annurev-animal-021815-111239
Sato, M., Kakui, Y. & Toya, M. 2021. Tell the difference between mitosis and meiosis: interplay between chromosomes, cytoskeleton, and cell cycle regulation. Frontiers in cell and developmental biology, 9, 660322,
https://doi.org/10.3389/fcell.2021.660322
Savage, J. R. 2001. Chromosome Rearrangements. eLS, 1-7.
https://doi.org/10.1038/npg.els.0000836
Shabanov, D., Vladymyrova, M., Leonov, A., Biriuk, O., Kravchenko, M., Mair, Q., Meleshko, O., Newman, J., Usova, O. & Zholtkevych G. 2020. Simulation as a Method for Asymptotic System Behavior Identification (e.g. Water Frog Hemiclonal Population Systems). Communications in Computer and Information Science, 1175, 392-414,
https://doi.org/10.1007/978-3-030-39459-2_18
Strus, V., Strus, I. & Khamar, I. 2023. Species and hybrid composition and genetic diversity of water frogs (Pelophylax esculentus complex) in western Ukrainian hemiclonal population systems. Studia Biologica, 17 (3), 67-84.
https://doi.org/10.30970/sbi.1703.726
Stöck, M., Dedukh, D., Reifová, R., Lamatsch, D. K., Starostová, Z. & Janko, K. 2021. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the extended speciation continuum'. Philosophical Transactions of the Royal Society B: Biological Sciences, 376 (1833), 20200103.
https://doi.org/10.1098/rstb.2020.0103
Sumner, A. T. 2002. Chromosomes. Wiley, 1-288.
https://doi.org/10.1002/9780470695975
Suriadna, N. 2023. Chromosomes of Pelophylax ridibundus Pallas, 1771 in different population systems of southern Ukraine. IOP Conference Series: Earth and Environmental Science, 1254(1), 012019.
https://doi.org/10.1088/1755-1315/1254/1/012019
Suryadna, N. N. 2003. The Data on Caryology of Green Frogs (Rana ridibunda, R. lessonae, R. esculenta) from Ukraine. Vestnik Zoologii, 37 (1), 33-40.
Suryadnaya, N. N. 2004. Мeiotic chromosomes of green frogs (Rana esculenta complex) of the Ukraine territory. Cytology and Genetics, 38 (6), 28-32.
Suriadna, N. M., Mykytynets, G. I., Pupiņš, M. & Gasso, V. Y., 2020. Population systems of Eurasian water frogs (Pelophylax) in the south of Ukraine. Biosystems Diversity, 28 (2), 154-162.
https://doi.org/10.15421/012021
Svinin, A. O., Dedukh, D. V., Borkin, L. J., Ermakov, O. A., Ivanov, A. Y., Litvinchuk, J. S., Zamaletdinov, R. I., Mikhaylova, R. I., Trubyanov, A. B., Skorinov, D. V., Rosanov, Y. M. & Litvinchuk, S. N. 2021. Genetic structure, morphological variation, and gametogenic peculiarities in water frogs (Pelophylax) from northeastern European Russia. Journal of Zoological Systematics and Evolutionary Research, 59 (3), 646-662.
https://doi.org/10.1111/jzs.12447
Tunner, H. G. 1973. Demonstration of the hybrid origin of the common green frog Rana esculenta L. The Science of Nature, 60 (10), 481-482.
https://doi.org/10.1007/BF00592872
Uzzell, T., Günther, R. & Berger, L. 1976. Rana ridibunda and Rana esculenta: a leaky hybridogenetic system (Amphibia Salientia). Proceedings of the Academy of Natural Sciences of Philadelphia, 147-171.
Vegerina, A. O., Biriuk, O. V. & Shabanov, D. A. 2014. Comparison of spermatogenesis stability in hemiclonal interspecific hybrid Pelophylax esculentus and parental species Pelophylax ridibundus (Amphibia, Anura). Pratsi Ukrainskoho Herpetolohichnoho Tovarystva, 5, 20-28 [In Russian].
Vinogradov, A. E., Borkin, L. J., Günther, R. & Rosanov, J. M. 1991. Two germ cell lineages with genomes of different species in one and the same animal. Hereditas, 114 (3), 245-251.




